These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31947268)

  • 1. A pneumatic-muscle-actuator-driven knee rehabilitation device for CAM therapy.
    Martens M; Zawatzki J; Seel T; Boblan I
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6237-6242. PubMed ID: 31947268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Accordion-Inspired Foldable Pneumatic Actuators for Knee Assistive Devices.
    Fang J; Yuan J; Wang M; Xiao L; Yang J; Lin Z; Xu P; Hou L
    Soft Robot; 2020 Feb; 7(1):95-108. PubMed ID: 31566506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a continuous passive and active motion device for hand rehabilitation.
    Birch B; Haslam E; Heerah I; Dechev N; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4306-9. PubMed ID: 19163665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing Foot Loads in Continuous Passive Motion (CPM) and Active Knee Joint Motion Devices.
    Stolz B; Grim C; Lutter C; Gelse K; Schell M; Swoboda B; Carl HD; Hotfiel T
    Sportverletz Sportschaden; 2021 Mar; 35(1):18-23. PubMed ID: 30791084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of an isokinetic knee dynamometer for evaluation of functional electrical stimulation strategies.
    Aksöz EA; Laubacher M; Riener R; Hunt KJ
    Med Eng Phys; 2019 Nov; 73():100-106. PubMed ID: 31421979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computer-controlled contracture correction device with low-load and continuous torque: an animal experiment and prototype design for clinical use.
    Akai M; Usuba M; Sekiguchi H; Hong B; Iwashita K; Shirasaki Y
    Prosthet Orthot Int; 2007 Jun; 31(2):121-32. PubMed ID: 17520489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable-cam resistance training machines: do they match the angle - torque relationship in humans?
    Folland J; Morris B
    J Sports Sci; 2008 Jan; 26(2):163-9. PubMed ID: 17885926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Torque of the shank rotating muscles in patients with knee joint injuries.
    Hrycyna M; Zieliński J
    Acta Bioeng Biomech; 2011; 13(4):77-83. PubMed ID: 22339068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlates of knee extensor training load used in rehabilitation after knee surgery.
    Morrissey MC; Goodwin PC
    J Strength Cond Res; 2007 Nov; 21(4):1050-2. PubMed ID: 18076254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knee orthopaedic device how robotic technology can improve outcome in knee rehabilitation.
    Koller-Hodac A; Leonardo D; Walpen S; Felder D
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975347. PubMed ID: 22275551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hip external rotation stiffness and midfoot passive mechanical resistance are associated with lower limb movement in the frontal and transverse planes during gait.
    Cardoso TB; Ocarino JM; Fajardo CC; Paes BDC; Souza TR; Fonseca ST; Resende RA
    Gait Posture; 2020 Feb; 76():305-310. PubMed ID: 31887703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.
    Andrade RJ; Freitas SR; Vaz JR; Bruno PM; Pezarat-Correia P
    Scand J Med Sci Sports; 2015 Jun; 25(3):338-45. PubMed ID: 24941915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elbow training device using the Mechanically Adjustable Stiffness Actuator(MASA).
    Choi J; Son C; Park S; Jung E; Yu D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3614-3617. PubMed ID: 30441159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial.
    Hughes L; Rosenblatt B; Haddad F; Gissane C; McCarthy D; Clarke T; Ferris G; Dawes J; Paton B; Patterson SD
    Sports Med; 2019 Nov; 49(11):1787-1805. PubMed ID: 31301034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint position sense and rehabilitation in the anterior cruciate ligament deficient knee.
    Carter ND; Jenkinson TR; Wilson D; Jones DW; Torode AS
    Br J Sports Med; 1997 Sep; 31(3):209-12. PubMed ID: 9298555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and control of an active 1-DoF mechanism for knee rehabilitation.
    Naghavi N; Mahjoob MJ
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):588-94. PubMed ID: 25811934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Motion characteristics of motorized knee splints].
    Stünitz B; Blauth W; Jentzen B
    Unfallchirurgie; 1993 Aug; 19(4):227-33. PubMed ID: 8379017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical considerations for rehabilitation of the knee.
    McGinty G; Irrgang JJ; Pezzullo D
    Clin Biomech (Bristol, Avon); 2000 Mar; 15(3):160-6. PubMed ID: 10656977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.