BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31947445)

  • 1. Optimizing Configurations for 7-DoF Robotic Ultrasound Guidance in Radiotherapy of the Prostate.
    Schluter M; Furweger C; Schlaefer A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6983-6986. PubMed ID: 31947445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and optimization of the robot setup for robotic-ultrasound-guided radiation therapy.
    Schlüter M; Gerlach S; Fürweger C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1379-1387. PubMed ID: 31172439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing robot motion for robotic ultrasound-guided radiation therapy.
    Schlüter M; Fürweger C; Schlaefer A
    Phys Med Biol; 2019 Oct; 64(19):195012. PubMed ID: 31422960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of robotic ultrasound image guidance on plan quality in SBRT of the prostate.
    Gerlach S; Kuhlemann I; Ernst F; Fürweger C; Schlaefer A
    Br J Radiol; 2017 Oct; 90(1078):20160926. PubMed ID: 28749165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic ultrasound-guided SBRT of the prostate: feasibility with respect to plan quality.
    Gerlach S; Kuhlemann I; Jauer P; Bruder R; Ernst F; Fürweger C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):149-159. PubMed ID: 27406743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AI-based optimization for US-guided radiation therapy of the prostate.
    Gerlach S; Hofmann T; Fürweger C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2022 Nov; 17(11):2023-2032. PubMed ID: 35593988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.
    Liang B; Li Y; Wei R; Guo B; Xu X; Liu B; Li J; Wu Q; Zhou F
    Phys Med Biol; 2018 Jan; 63(1):015034. PubMed ID: 29148432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic intrafractional US guidance for liver SABR: System design, beam avoidance, and clinical imaging.
    Schlosser J; Gong RH; Bruder R; Schweikard A; Jang S; Henrie J; Kamaya A; Koong A; Chang DT; Hristov D
    Med Phys; 2016 Nov; 43(11):5951. PubMed ID: 27806580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery.
    Schlosser J; Salisbury K; Hristov D
    Med Phys; 2010 Dec; 37(12):6357-67. PubMed ID: 21302793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose tracking assessment for image-guided radiotherapy of the prostate bed and the impact on clinical workflow.
    Orlandini LC; Coppola M; Fulcheri C; Cernusco L; Wang P; Cionini L
    Radiat Oncol; 2017 Apr; 12(1):78. PubMed ID: 28454559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans.
    Bazalova-Carter M; Qu B; Palma B; Hårdemark B; Hynning E; Jensen C; Maxim PG; Loo BW
    Med Phys; 2015 May; 42(5):2615-25. PubMed ID: 25979053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved dose reconstruction by motion encoding of volumetric modulated arc therapy fields delivered with and without dynamic multi-leaf collimator tracking.
    Ravkilde T; Keall PJ; Grau C; Høyer M; Poulsen PR
    Acta Oncol; 2013 Oct; 52(7):1497-503. PubMed ID: 23984811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
    Lee EK; Fox T; Crocker I
    Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of online/offline image guidance/adaptation approaches for prostate cancer radiation therapy.
    Qin A; Sun Y; Liang J; Yan D
    Int J Radiat Oncol Biol Phys; 2015 Apr; 91(5):1026-33. PubMed ID: 25832693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time adaptive planning method for radiotherapy treatment delivery for prostate cancer patients, based on a library of plans accounting for possible anatomy configuration changes.
    Antico M; Prinsen P; Cellini F; Fracassi A; Isola AA; Cobben D; Fontanarosa D
    PLoS One; 2019; 14(2):e0213002. PubMed ID: 30818345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy.
    Wang X; Zhang X; Dong L; Liu H; Wu Q; Mohan R
    Int J Radiat Oncol Biol Phys; 2004 Nov; 60(4):1325-37. PubMed ID: 15519806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility and analysis of CNN-based candidate beam generation for robotic radiosurgery.
    Gerlach S; Fürweger C; Hofmann T; Schlaefer A
    Med Phys; 2020 Sep; 47(9):3806-3815. PubMed ID: 32548877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT-prostate SBRT.
    Rossi L; Breedveld S; Heijmen BJ; Voet PW; Lanconelli N; Aluwini S
    Phys Med Biol; 2012 Sep; 57(17):5441-58. PubMed ID: 22864234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image-guided intensity-modulated radiotherapy of prostate cancer: Analysis of interfractional errors and acute toxicity.
    Rudat V; Nour A; Hammoud M; Alaradi A; Mohammed A
    Strahlenther Onkol; 2016 Feb; 192(2):109-17. PubMed ID: 26545764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming.
    Yang R; Dai J; Yang Y; Hu Y
    Phys Med Biol; 2006 Aug; 51(15):3653-66. PubMed ID: 16861772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.