These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31947465)

  • 21. Modulation of Pulse Propagation and Blood Flow via Cuff Inflation-New Distal Insights.
    Bogatu LI; Turco S; Mischi M; Schmitt L; Woerlee P; Bresch E; Noordergraaf GJ; Paulussen I; Bouwman A; Korsten HHM; Muehlsteff J
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Central Blood Pressure Monitoring via a Standard Automatic Arm Cuff.
    Natarajan K; Cheng HM; Liu J; Gao M; Sung SH; Chen CH; Hahn JO; Mukkamala R
    Sci Rep; 2017 Oct; 7(1):14441. PubMed ID: 29089581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mathematical study of some biomechanical factors affecting the oscillometric blood pressure measurement.
    Ursino M; Cristalli C
    IEEE Trans Biomed Eng; 1996 Aug; 43(8):761-78. PubMed ID: 9216149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accuracy and reliability of wrist-cuff devices for self-measurement of blood pressure.
    Kikuya M; Chonan K; Imai Y; Goto E; Ishii M;
    J Hypertens; 2002 Apr; 20(4):629-38. PubMed ID: 11910297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Indirect arterial blood pressure measurement at the wrist using a pad-type square cuff and volume-oscillometric method.
    Lu W; Tsukada A; Shiraishi T; Sasaki K
    Front Med Biol Eng; 2001; 11(3):207-19. PubMed ID: 11898902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanics of the occlusive arm cuff and its application as a volume sensor.
    Drzewiecki G; Bansal V; Karam E; Hood R; Apple H
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):704-8. PubMed ID: 8244431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of a conical cuff on the forearm for estimating radial artery blood pressure.
    Hersh LT; Sesing JC; Luczyk WJ; Friedman BA; Zhou S; Batchelder PB
    Blood Press Monit; 2014 Feb; 19(1):38-45. PubMed ID: 24217368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patient-Specific Oscillometric Blood Pressure Measurement.
    Liu J; Cheng HM; Chen CH; Sung SH; Moslehpour M; Hahn JO; Mukkamala R
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1220-1228. PubMed ID: 26485351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An initial step towards improving the accuracy of the oscillometric blood pressure measurement.
    Liu J; Hahn JO; Mukkamala R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4082-5. PubMed ID: 24110629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of an automatic oscillometric method and of various cuffs for the measurement of arterial pressure in the neonate.
    Pellegrini-Caliumi G; Agostino R; Nodari S; Maffei G; Moretti C; Bucci G
    Acta Paediatr Scand; 1982 Sep; 71(5):791-7. PubMed ID: 7180448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of arm circumference on noninvasive oscillometric blood pressure referenced with intra-aortic blood pressure.
    Shangguan Q; Wu Y; Xu J; Su H; Li J; Hong K; Cheng X
    Blood Press Monit; 2015 Dec; 20(6):316-9. PubMed ID: 26110370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radial artery tonometry: moderately accurate but unpredictable technique of continuous non-invasive arterial pressure measurement.
    Weiss BM; Spahn DR; Rahmig H; Rohling R; Pasch T
    Br J Anaesth; 1996 Mar; 76(3):405-11. PubMed ID: 8785142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discrepancies between direct and indirect blood pressure measurements using various recommendations for arm cuff selection.
    Clark JA; Lieh-Lai MW; Sarnaik A; Mattoo TK
    Pediatrics; 2002 Nov; 110(5):920-3. PubMed ID: 12415030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oscillometric blood pressure measurement used for calibration of the arterial tonometry method contributes significantly to error.
    Hansen S; Staber M
    Eur J Anaesthesiol; 2006 Sep; 23(9):781-7. PubMed ID: 16723049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cuff-less Blood Pressure Measurement Based on Deep Convolutional Neural Network.
    Liu Z; Miao F; Wang R; Liu J; Wen B; Li Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3775-3778. PubMed ID: 31946696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oscillometric and intra-arterial blood pressure in preterm and term infants: extent of discrepancy and factors associated with inaccuracy.
    Shimokaze T; Akaba K; Saito E
    Am J Perinatol; 2015 Feb; 32(3):277-82. PubMed ID: 24971570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new oscillometry-based method for estimating the brachial arterial compliance under loaded conditions.
    Liu SH; Wang JJ; Huang KS
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2463-70. PubMed ID: 18838372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a Blood Pressure Measurement Instrument with Active Cuff Pressure Control Schemes.
    Kuo CH; Wu CJ; Chou HC; Chen GT; Kuo YC
    J Healthc Eng; 2017; 2017():9128745. PubMed ID: 29118964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systolic peak foot-to-apex time interval, a novel oscillometric technique for systolic blood pressure measurement.
    Benmira AM; Perez-Martin A; Coudray S; Schuster I; Aichoun I; Laurent J; Bereski-Reguig F; Dauzat M
    J Hypertens; 2017 May; 35(5):1002-1010. PubMed ID: 28099195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Faster oscillometric manometry does not sacrifice the accuracy of blood pressure determination.
    Sugimachi M; Okamoto H; Hoka S; Sunagawa K
    Blood Press Monit; 2004 Jun; 9(3):135-41. PubMed ID: 15199307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.