These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31947474)

  • 21. Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography.
    Lu M; Zhang H; Wang J; Yuan J; Hu Z; Liu H
    Biomed Eng Online; 2013 Aug; 12():79. PubMed ID: 23937814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Hertzian contact mechanics based formulation to improve ultrasound elastography assessment of uterine cervical tissue stiffness.
    Briggs BN; Stender ME; Muljadi PM; Donnelly MA; Winn VD; Ferguson VL
    J Biomech; 2015 Jun; 48(9):1524-32. PubMed ID: 26003483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A regularization-free Young's modulus reconstruction algorithm for ultrasound elasticity imaging.
    Pan X; Gao J; Shao J; Luo J; Bai J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1132-5. PubMed ID: 24109892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performances and Limitations of Several Ultrasound-Based Elastography Techniques: A Phantom Study.
    Franchi-Abella S; Elie C; Correas JM
    Ultrasound Med Biol; 2017 Oct; 43(10):2402-2415. PubMed ID: 28760576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasound shear wave elastography in assessment of muscle stiffness in patients with Parkinson's disease: a primary observation.
    Du LJ; He W; Cheng LG; Li S; Pan YS; Gao J
    Clin Imaging; 2016; 40(6):1075-1080. PubMed ID: 27408992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical coherence elastography to evaluate depth-resolved elasticity of tissue.
    Yang C; Xiang Z; Li Z; Nan N; Wang X
    Opt Express; 2022 Mar; 30(6):8709-8722. PubMed ID: 35299317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A method for characterization of tissue elastic properties combining ultrasonic computed tomography with elastography.
    Glozman T; Azhari H
    J Ultrasound Med; 2010 Mar; 29(3):387-98. PubMed ID: 20194935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel breast software phantom for biomechanical modeling of elastography.
    Bhatti SN; Sridhar-Keralapura M
    Med Phys; 2012 Apr; 39(4):1748-68. PubMed ID: 22482599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correspondence of ultrasound elasticity imaging to direct mechanical measurement in aging DVT in rats.
    Xie H; Kim K; Aglyamov SR; Emelianov SY; O'Donnell M; Weitzel WF; Wrobleski SK; Myers DD; Wakefield TW; Rubin JM
    Ultrasound Med Biol; 2005 Oct; 31(10):1351-9. PubMed ID: 16223638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding the Contrast Mechanism in Rotation Elastogram: A Parametric Study.
    Lokesh B; Ten Dam AM; de Korte CL; Thittai AK
    Ultrasound Med Biol; 2018 Aug; 44(8):1860-1872. PubMed ID: 29801975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechano-acoustic determination of Young's modulus of articular cartilage.
    Saarakkala S; Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Jurvelin JS
    Biorheology; 2004; 41(3-4):167-79. PubMed ID: 15299250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear Induced Non-Linear Elasticity Imaging: Elastography for Compound Deformations.
    Goswami S; Ahmed R; Khan S; Doyley MM; McAleavey SA
    IEEE Trans Med Imaging; 2020 Nov; 39(11):3559-3570. PubMed ID: 32746104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo assessment of the mechanical properties of crystalline lenses in a rabbit model using ultrasound elastography: Effects of ultrasound frequency and age.
    Wang Q; Zhu Y; Shao M; Lin H; Chen S; Chen X; Alizad A; Fatemi M; Zhang X
    Exp Eye Res; 2019 Jul; 184():258-265. PubMed ID: 31077713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Elastography Phantom Prototype for Assessment of Ultrasound Elastography Imaging Performance.
    Al-Mutairi FF; Chung EM; Moran CM; Ramnarine KV
    Ultrasound Med Biol; 2021 Sep; 47(9):2749-2758. PubMed ID: 34144833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motion effects on the measurement of stiffness on ultrasound shear wave elastography: a moving liver fibrosis phantom study.
    Shin HJ; Kim MJ; Yoon CS; Lee K; Lee KS; Park JC; Lee MJ; Yoon H
    Med Ultrason; 2018 Feb; 1(1):14-20. PubMed ID: 29400362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Quasi-Static Ultrasound Elastography With Plane Wave In Vivo.
    Papadacci C; Bunting EA; Konofagou EE
    IEEE Trans Med Imaging; 2017 Feb; 36(2):357-365. PubMed ID: 27483021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of an iterative reconstruction method for quantitative elastography.
    Doyley MM; Meaney PM; Bamber JC
    Phys Med Biol; 2000 Jun; 45(6):1521-40. PubMed ID: 10870708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography.
    Chino K; Akagi R; Dohi M; Fukashiro S; Takahashi H
    PLoS One; 2012; 7(9):e45764. PubMed ID: 23029231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.