These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31947511)

  • 21. High-valent nonheme iron-oxo species in biomimetic oxidations.
    Shan X; Que L
    J Inorg Biochem; 2006 Apr; 100(4):421-33. PubMed ID: 16530841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron Coordination Chemistry of Phenylpyruvate: An Unexpected kappa3-bridging mode that leads to oxidative cleavage of the C2-C3 bond.
    Paine TK; Zheng H; Que L
    Inorg Chem; 2005 Feb; 44(3):474-6. PubMed ID: 15679371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad.
    Bassan A; Borowski T; Siegbahn PE
    Dalton Trans; 2004 Oct; (20):3153-62. PubMed ID: 15483690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced reactivity of a biomimetic iron(II) α-keto acid complex through immobilization on functionalized gold nanoparticles.
    Sheet D; Halder P; Paine TK
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13314-8. PubMed ID: 24136819
    [No Abstract]   [Full Text] [Related]  

  • 26. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry.
    Roelfes G; Vrajmasu V; Chen K; Ho RY; Rohde JU; Zondervan C; La Crois RM; Schudde EP; Lutz M; Spek AL; Hage R; Feringa BL; Münck E; Que L
    Inorg Chem; 2003 Apr; 42(8):2639-53. PubMed ID: 12691572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic?
    de Visser SP
    J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics and mechanism of the ferroxime(II)-catalysed biomimetic oxidation of 2-aminophenol by dioxygen. A functional phenoxazinone synthase model.
    Simándi TM; Simándi LI; Gyor M; Rockenbauer A; Gömöry A
    Dalton Trans; 2004 Apr; (7):1056-60. PubMed ID: 15252684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic and electronic structure studies of the role of active site interactions in the decarboxylation reaction of alpha-keto acid-dependent dioxygenases.
    Neidig ML; Brown CD; Kavana M; Choroba OW; Spencer JB; Moran GR; Solomon EI
    J Inorg Biochem; 2006 Dec; 100(12):2108-16. PubMed ID: 17070917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. O
    Dong G; Ryde U
    Inorg Chem; 2016 Nov; 55(22):11727-11735. PubMed ID: 27801577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aliphatic C-C Bond Cleavage of α-Hydroxy Ketones by Non-Heme Iron(II) Complexes: Mechanistic Insight into the Reaction Catalyzed by 2,4'-Dihydroxyacetophenone Dioxygenase.
    Rahaman R; Paria S; Paine TK
    Inorg Chem; 2015 Nov; 54(22):10576-86. PubMed ID: 26536067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics.
    Wang Y; Li J; Liu A
    J Biol Inorg Chem; 2017 Apr; 22(2-3):395-405. PubMed ID: 28084551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic insights into dioxygen activation, oxygen atom exchange and substrate epoxidation by AsqJ dioxygenase from quantum mechanical/molecular mechanical calculations.
    Song X; Lu J; Lai W
    Phys Chem Chem Phys; 2017 Aug; 19(30):20188-20197. PubMed ID: 28726913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic Insights into the Oxidative Rearrangement Catalyzed by the Unprecedented Dioxygenase ChaP Involved in Chartreusin Biosynthesis.
    Li X; Zhu W; Liu Y
    Inorg Chem; 2020 Oct; 59(19):13988-13999. PubMed ID: 32951427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes.
    Kumar D; Thiel W; de Visser SP
    J Am Chem Soc; 2011 Mar; 133(11):3869-82. PubMed ID: 21344861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-inspired arene cis-dihydroxylation by a non-haem iron catalyst modeling the action of naphthalene dioxygenase.
    Feng Y; Ke CY; Xue G; Que L
    Chem Commun (Camb); 2009 Jan; (1):50-2. PubMed ID: 19081995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactivity of biomimetic iron(II)-2-aminophenolate complexes toward dioxygen: mechanistic investigations on the oxidative C-C bond cleavage of substituted 2-aminophenols.
    Chakraborty B; Bhunya S; Paul A; Paine TK
    Inorg Chem; 2014 May; 53(10):4899-912. PubMed ID: 24787025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of varying carboxylate ligation on the electronic environment of N2O(x) (x = 1-3) nonheme iron: a DFT analysis.
    Cappillino PJ; McNally JS; Wang F; Caradonna JP
    Dalton Trans; 2012 Jan; 41(2):474-83. PubMed ID: 22042235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygenative aromatic ring cleavage of 2-aminophenol with dioxygen catalyzed by a nonheme iron complex: catalytic functional model of 2-aminophenol dioxygenases.
    Chatterjee S; Paine TK
    Inorg Chem; 2015 Feb; 54(4):1720-7. PubMed ID: 25646806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.