These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 31947511)
61. Biomimetic iron(III) complexes of N3O and N3O2 donor ligands: protonation of coordinated ethanolate donor enhances dioxygenase activity. Sundaravel K; Sankaralingam M; Suresh E; Palaniandavar M Dalton Trans; 2011 Sep; 40(33):8444-58. PubMed ID: 21785763 [TBL] [Abstract][Full Text] [Related]
62. Spectroscopy and electronic structures of mono- and binuclear high-valent non-heme iron-oxo systems. Decker A; Clay MD; Solomon EI J Inorg Biochem; 2006 Apr; 100(4):697-706. PubMed ID: 16510189 [TBL] [Abstract][Full Text] [Related]
63. Aliphatic C-H Bond Halogenation by Iron(II)-α-Keto Acid Complexes and O Jana RD; Sheet D; Chatterjee S; Paine TK Inorg Chem; 2018 Aug; 57(15):8769-8777. PubMed ID: 30009593 [TBL] [Abstract][Full Text] [Related]
64. CD and MCD studies of the non-heme ferrous active site in (4-hydroxyphenyl)pyruvate dioxygenase: correlation between oxygen activation in the extradiol and alpha-KG-dependent dioxygenases. Neidig ML; Kavana M; Moran GR; Solomon EI J Am Chem Soc; 2004 Apr; 126(14):4486-7. PubMed ID: 15070344 [TBL] [Abstract][Full Text] [Related]
65. How do the thiolate ligand and its relative position control the oxygen activation in the cysteine dioxygenase model? Che X; Gao J; Zhang D; Liu C J Phys Chem A; 2012 Jun; 116(22):5510-7. PubMed ID: 22587555 [TBL] [Abstract][Full Text] [Related]
66. The effect and influence of cis-ligands on the electronic and oxidizing properties of nonheme oxoiron biomimetics. A density functional study. de Visser SP; Nam W J Phys Chem A; 2008 Dec; 112(50):12887-95. PubMed ID: 18616332 [TBL] [Abstract][Full Text] [Related]
67. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II). Ruipérez F; Mujika JI; Ugalde JM; Exley C; Lopez X J Inorg Biochem; 2012 Dec; 117():118-23. PubMed ID: 23085591 [TBL] [Abstract][Full Text] [Related]
68. Catalytic dioxygenation of flavonol by M(II)-complexes (M = Mn, Fe, Co, Ni, Cu and Zn) - mimicking the M(II)-substituted quercetin 2,3-dioxygenase. Sun YJ; Huang QQ; Li P; Zhang JJ Dalton Trans; 2015 Aug; 44(31):13926-38. PubMed ID: 26153684 [TBL] [Abstract][Full Text] [Related]
69. Cryoreduction of the NO-adduct of taurine:alpha-ketoglutarate dioxygenase (TauD) yields an elusive {FeNO}(8) species. Ye S; Price JC; Barr EW; Green MT; Bollinger JM; Krebs C; Neese F J Am Chem Soc; 2010 Apr; 132(13):4739-51. PubMed ID: 20218714 [TBL] [Abstract][Full Text] [Related]
70. Structural insights into nonheme alkylperoxoiron(III) and oxoiron(IV) intermediates by X-ray absorption spectroscopy. Rohde JU; Torelli S; Shan X; Lim MH; Klinker EJ; Kaizer J; Chen K; Nam W; Que L J Am Chem Soc; 2004 Dec; 126(51):16750-61. PubMed ID: 15612713 [TBL] [Abstract][Full Text] [Related]
71. Dioxygenation of cysteamine to hypotaurine at a tris(pyrazolyl)borate iron(ii) unit - cysteamine dioxygenase mimicking? Sallmann M; Braun B; Limberg C Chem Commun (Camb); 2015 Apr; 51(31):6785-7. PubMed ID: 25786780 [TBL] [Abstract][Full Text] [Related]
72. A mixed-valent, Fe(II)Fe(I), diiron complex reproduces the unique rotated state of the [FeFe]hydrogenase active site. Liu T; Darensbourg MY J Am Chem Soc; 2007 Jun; 129(22):7008-9. PubMed ID: 17497786 [No Abstract] [Full Text] [Related]
73. Long-range electron transfer triggers mechanistic differences between iron(IV)-oxo and iron(IV)-imido oxidants. Kumar S; Faponle AS; Barman P; Vardhaman AK; Sastri CV; Kumar D; de Visser SP J Am Chem Soc; 2014 Dec; 136(49):17102-15. PubMed ID: 25392052 [TBL] [Abstract][Full Text] [Related]
74. Intermediates in the oxygenation of a nonheme diiron(II) complex, including the first evidence for a bound superoxo species. Shan X; Que L Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5340-5. PubMed ID: 15802473 [TBL] [Abstract][Full Text] [Related]
75. Contrasting effects of axial ligands on electron-transfer versus proton-coupled electron-transfer reactions of nonheme oxoiron(IV) complexes. Fukuzumi S; Kotani H; Suenobu T; Hong S; Lee YM; Nam W Chemistry; 2010 Jan; 16(1):354-61. PubMed ID: 19937616 [TBL] [Abstract][Full Text] [Related]
76. Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450. Tahsini L; Bagherzadeh M; Nam W; de Visser SP Inorg Chem; 2009 Jul; 48(14):6661-9. PubMed ID: 19469505 [TBL] [Abstract][Full Text] [Related]
77. Can a Mononuclear Iron(III)-Superoxo Active Site Catalyze the Decarboxylation of Dodecanoic Acid in UndA to Produce Biofuels? Lin YT; Stańczak A; Manchev Y; Straganz GD; de Visser SP Chemistry; 2020 Feb; 26(10):2233-2242. PubMed ID: 31584704 [TBL] [Abstract][Full Text] [Related]
78. A diferrous dithiolate as a model of the elusive H(ox)(inact) state of the [FeFe] hydrogenases: an electrochemical and theoretical dissection of its redox chemistry. Chouffai D; Capon JF; De Gioia L; Pétillon FY; Schollhammer P; Talarmin J; Zampella G Inorg Chem; 2015 Jan; 54(1):299-311. PubMed ID: 25496017 [TBL] [Abstract][Full Text] [Related]
79. A DFT study of nucleobase dealkylation by the DNA repair enzyme AlkB. Liu H; Llano J; Gauld JW J Phys Chem B; 2009 Apr; 113(14):4887-98. PubMed ID: 19338370 [TBL] [Abstract][Full Text] [Related]
80. DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the [FeFe] hydrogenase active site. Bertini L; Greco C; De Gioia L; Fantucci P J Phys Chem A; 2009 May; 113(19):5657-70. PubMed ID: 19378958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]