These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 31947823)

  • 41. Transcriptome-wide Identification of RNA-binding Protein Binding Sites Using Photoactivatable-Ribonucleoside-Enhanced Crosslinking Immunoprecipitation (PAR-CLIP).
    Maatz H; Kolinski M; Hubner N; Landthaler M
    Curr Protoc Mol Biol; 2017 Apr; 118():27.6.1-27.6.19. PubMed ID: 28369676
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microarray is an efficient tool for circRNA profiling.
    Li S; Teng S; Xu J; Su G; Zhang Y; Zhao J; Zhang S; Wang H; Qin W; Lu ZJ; Guo Y; Zhu Q; Wang D
    Brief Bioinform; 2019 Jul; 20(4):1420-1433. PubMed ID: 29415187
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins.
    Hafner M; Landthaler M; Burger L; Khorshid M; Hausser J; Berninger P; Rothballer A; Ascano M; Jungkamp AC; Munschauer M; Ulrich A; Wardle GS; Dewell S; Zavolan M; Tuschl T
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20644507
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of Circular RNAs Using the Web Tool CircInteractome.
    Panda AC; Dudekula DB; Abdelmohsen K; Gorospe M
    Methods Mol Biol; 2018; 1724():43-56. PubMed ID: 29322439
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.
    Zhang Z; Xing Y
    Nucleic Acids Res; 2017 Sep; 45(16):9260-9271. PubMed ID: 28934506
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving CLIP-seq data analysis by incorporating transcript information.
    Uhl M; Tran VD; Backofen R
    BMC Genomics; 2020 Dec; 21(1):894. PubMed ID: 33334306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Throughput Data Reveals Novel Circular RNAs via Competitive Endogenous RNA Networks Associated with Human Intracranial Aneurysms.
    Huang Q; Huang QY; Sun Y; Wu S
    Med Sci Monit; 2019 Jun; 25():4819-4830. PubMed ID: 31254341
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.
    Wang Z; Lei X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415289
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integration of CLIP experiments of RNA-binding proteins: a novel approach to predict context-dependent splicing factors from transcriptomic data.
    Carazo F; Gimeno M; Ferrer-Bonsoms JA; Rubio A
    BMC Genomics; 2019 Jun; 20(1):521. PubMed ID: 31238884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network.
    Yang Y; Hou Z; Ma Z; Li X; Wong KC
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33126261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites.
    Lasantha D; Vidanagamachchi S; Nallaperuma S
    Comput Biol Med; 2024 May; 174():108466. PubMed ID: 38615462
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptome-wide identification of RNA-binding protein binding sites using seCLIP-seq.
    Blue SM; Yee BA; Pratt GA; Mueller JR; Park SS; Shishkin AA; Starner AC; Van Nostrand EL; Yeo GW
    Nat Protoc; 2022 May; 17(5):1223-1265. PubMed ID: 35322209
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcriptome-Wide Mapping of Protein-RNA Interactions.
    Bi X; Shen X
    Methods Mol Biol; 2020; 2161():161-173. PubMed ID: 32681512
    [TBL] [Abstract][Full Text] [Related]  

  • 54. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data.
    Li JH; Liu S; Zhou H; Qu LH; Yang JH
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D92-7. PubMed ID: 24297251
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proximity-CLIP Provides a Snapshot of Protein-Occupied RNA Elements at Subcellular Resolution and Transcriptome-Wide Scale.
    Benhalevy D; Hafner M
    Methods Mol Biol; 2020; 2166():283-305. PubMed ID: 32710416
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Circular RNAs and their associations with breast cancer subtypes.
    Nair AA; Niu N; Tang X; Thompson KJ; Wang L; Kocher JP; Subramanian S; Kalari KR
    Oncotarget; 2016 Dec; 7(49):80967-80979. PubMed ID: 27829232
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CLIP-Seq in Bacteria: Global Recognition Patterns of Bacterial RNA-Binding Proteins.
    Andresen L; Holmqvist E
    Methods Enzymol; 2018; 612():127-145. PubMed ID: 30502939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analyzing RNA-Protein Interactions by Cross-Link Rates and CLIP-seq Libraries.
    Porter DF; Garg RM; Meyers RM; Miao W; Ducoli L; Zarnegar BJ; Khavari PA
    Curr Protoc; 2023 Jan; 3(1):e659. PubMed ID: 36705610
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using Protein Interaction Profile Sequencing (PIP-seq) to Identify RNA Secondary Structure and RNA-Protein Interaction Sites of Long Noncoding RNAs in Plants.
    Kramer MC; Gregory BD
    Methods Mol Biol; 2019; 1933():343-361. PubMed ID: 30945196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep Computational Circular RNA Analytics from RNA-seq Data.
    Jakobi T; Dieterich C
    Methods Mol Biol; 2018; 1724():9-25. PubMed ID: 29322437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.