BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 31947880)

  • 61. Proteolysis: a key post-translational modification regulating proteoglycans.
    Mead TJ; Bhutada S; Martin DR; Apte SS
    Am J Physiol Cell Physiol; 2022 Sep; 323(3):C651-C665. PubMed ID: 35785985
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The estrous cycle modulates small leucine-rich proteoglycans expression in mouse uterine tissues.
    Salgado RM; Favaro RR; Martin SS; Zorn TM
    Anat Rec (Hoboken); 2009 Jan; 292(1):138-53. PubMed ID: 18951514
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sequence features, structure, ligand interaction, and diseases in small leucine rich repeat proteoglycans.
    Matsushima N; Miyashita H; Kretsinger RH
    J Cell Commun Signal; 2021 Dec; 15(4):519-531. PubMed ID: 33860400
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Role of Glycosylation in Vascular Calcification.
    Masbuchin AN; Rohman MS; Liu PY
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575990
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Expression, localization and synthesis of small leucine-rich proteoglycans in developing mouse molar tooth germ.
    Randilini A; Fujikawa K; Shibata S
    Eur J Histochem; 2020 Feb; 64(1):. PubMed ID: 32046476
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of mechanical stretching on the morphology of extracellular polymers and the mRNA expression of collagens and small leucine-rich repeat proteoglycans in vaginal fibroblasts from women with pelvic organ prolapse.
    Wang S; Lü D; Zhang Z; Jia X; Yang L
    PLoS One; 2018; 13(4):e0193456. PubMed ID: 29630675
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Small Leucine-Rich Proteoglycans in Renal Inflammation: Two Sides of the Coin.
    Nastase MV; Janicova A; Roedig H; Hsieh LT; Wygrecka M; Schaefer L
    J Histochem Cytochem; 2018 Apr; 66(4):261-272. PubMed ID: 29290137
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular interactions in the retinal basement membrane system: a proteomic approach.
    Balasubramani M; Schreiber EM; Candiello J; Balasubramani GK; Kurtz J; Halfter W
    Matrix Biol; 2010 Jul; 29(6):471-83. PubMed ID: 20403434
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Alterations of heparan sulfate moieties in cultured endothelial cells exposed to endotoxin.
    Colburn P; Dietrich CP; Buonassisi V
    Arch Biochem Biophys; 1996 Jan; 325(1):129-38. PubMed ID: 8554337
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The use of immunohistochemistry in understanding the structure and function of the extracellular matrix of dental tissues.
    Hall RC; Embery G
    Adv Dent Res; 1997 Nov; 11(4):478-86. PubMed ID: 9470508
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth.
    Iozzo RV
    Crit Rev Biochem Mol Biol; 1997; 32(2):141-74. PubMed ID: 9145286
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Proteoglycans and hyaluronan in female reproductive organs.
    Yanagishita M
    EXS; 1994; 70():179-90. PubMed ID: 8298246
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identification of decorin and chondroitin sulfate proteoglycans in turkey skeletal muscle.
    Velleman SG; Patterson RA; Nestor KE
    Poult Sci; 1997 Mar; 76(3):506-10. PubMed ID: 9068052
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biglycan in the Skeleton.
    Kram V; Shainer R; Jani P; Meester JAN; Loeys B; Young MF
    J Histochem Cytochem; 2020 Nov; 68(11):747-762. PubMed ID: 32623936
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Small leucine-rich repeat proteoglycans associated with mature insoluble elastin serve as binding sites for galectins.
    Itoh A; Nonaka Y; Ogawa T; Nakamura T; Nishi N
    Biosci Biotechnol Biochem; 2017 Nov; 81(11):2098-2104. PubMed ID: 28958189
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Beta ig-h3 interacts directly with biglycan and decorin, promotes collagen VI aggregation, and participates in ternary complexing with these macromolecules.
    Reinboth B; Thomas J; Hanssen E; Gibson MA
    J Biol Chem; 2006 Mar; 281(12):7816-24. PubMed ID: 16434404
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Large aggregating and small leucine-rich proteoglycans are degraded by different pathways and at different rates in tendon.
    Samiric T; Ilic MZ; Handley CJ
    Eur J Biochem; 2004 Sep; 271(17):3612-20. PubMed ID: 15317597
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Distinct dysregulation of the small leucine-rich repeat protein family in osteoarthritic acetabular labrum compared to articular cartilage.
    Juchtmans N; Dhollander AA; Coudenys J; Audenaert EA; Pattyn C; Lambrecht S; Elewaut D
    Arthritis Rheumatol; 2015 Feb; 67(2):435-41. PubMed ID: 25371314
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Proteoglycans remodeling in cancer: Underlying molecular mechanisms.
    Theocharis AD; Karamanos NK
    Matrix Biol; 2019 Jan; 75-76():220-259. PubMed ID: 29128506
    [TBL] [Abstract][Full Text] [Related]  

  • 80. New approaches to regulating the chondroitin/dermatan sulfate glycosaminoglycan component of the vascular extracellular matrix.
    Nigro J; Ballinger ML; Survase S; Osman N; Little PJ
    ScientificWorldJournal; 2005 Jul; 5():515-20. PubMed ID: 16075147
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.