These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31947927)

  • 1. Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics.
    Garoli D; Schirato A; Giovannini G; Cattarin S; Ponzellini P; Calandrini E; Proietti Zaccaria R; D'Amico F; Pachetti M; Yang W; Jin HJ; Krahne R; Alabastri A
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization.
    Raja SS; Cheng CW; Sang Y; Chen CA; Zhang XQ; Dubey A; Yen TJ; Chang YM; Lee YH; Gwo S
    ACS Nano; 2020 Jul; 14(7):8838-8845. PubMed ID: 32589398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis.
    Koya AN; Zhu X; Ohannesian N; Yanik AA; Alabastri A; Proietti Zaccaria R; Krahne R; Shih WC; Garoli D
    ACS Nano; 2021 Apr; 15(4):6038-6060. PubMed ID: 33797880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence enhancement using silver-gold nanocomposite substrates.
    Choudhury SD; Badugu R; Ray K; Vanam PS; Lakowicz JR
    Proc SPIE Int Soc Opt Eng; 2012 Feb; 8234():82340B. PubMed ID: 24027613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting infrared energy transfer in 3D nanoporous gold antennas.
    Garoli D; Calandrini E; Bozzola A; Ortolani M; Cattarin S; Barison S; Toma A; De Angelis F
    Nanoscale; 2017 Jan; 9(2):915-922. PubMed ID: 28000833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis Methods and Optical Sensing Applications of Plasmonic Metal Nanoparticles Made from Rhodium, Platinum, Gold, or Silver.
    Demishkevich E; Zyubin A; Seteikin A; Samusev I; Park I; Hwangbo CK; Choi EH; Lee GJ
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.
    Liu HW; Lin FC; Lin SW; Wu JY; Chou BT; Lai KJ; Lin SD; Huang JS
    ACS Nano; 2015 Apr; 9(4):3875-86. PubMed ID: 25848830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous Au-Ag Nanoparticles from Galvanic Replacement Applied as Single-Particle SERS Probe for Quantitative Monitoring.
    Wang L; Patskovsky S; Gauthier-Soumis B; Meunier M
    Small; 2022 Jan; 18(1):e2105209. PubMed ID: 34761520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid metal-dielectric gratings (HMDGs) as an alternative UV-SERS substrate.
    Zheng J; Liu X; Tian M; Su Y; Li L
    Phys Chem Chem Phys; 2023 Jun; 25(22):15257-15262. PubMed ID: 37221935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark-Field Scattering and Local SERS Mapping from Plasmonic Aluminum Bowtie Antenna Array.
    Dao TD; Hoang CV; Nishio N; Yamamoto N; Ohi A; Nabatame T; Aono M; Nagao T
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31337078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor.
    Kassu A; Farley C; Sharma A; Kim W; Guo J
    Sensors (Basel); 2015 Nov; 15(12):29924-37. PubMed ID: 26633402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconventional plasmonic sensitization of graphene in mid-infrared.
    Paria D; Vadakkumbatt V; Ravindra P; Avasthi S; Ghosh A
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33873164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum Plasmonics Enriched Ultraviolet GaN Photodetector with Ultrahigh Responsivity, Detectivity, and Broad Bandwidth.
    Dubey A; Mishra R; Hsieh YH; Cheng CW; Wu BH; Chen LJ; Gwo S; Yen TJ
    Adv Sci (Weinh); 2020 Dec; 7(24):2002274. PubMed ID: 33344129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Nanostructures-Decorated ZIF-8-Derived Nanoporous Carbon for Surface-Enhanced Raman Scattering.
    Liao GY; Lien MC; Tadepalli S; Liu KK
    ACS Omega; 2022 Oct; 7(41):36427-36433. PubMed ID: 36278097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Density Plasmonic Nanoparticle Arrays Deposited on Nanoporous Anodic Alumina Templates for Optical Sensor Applications.
    Malinovskis U; Poplausks R; Erts D; Ramser K; Tamulevičius S; Tamulevičienė A; Gu Y; Prikulis J
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces.
    Siddique RH; Mertens J; Hölscher H; Vignolini S
    Light Sci Appl; 2017 Jul; 6(7):e17015. PubMed ID: 30167271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slanted Ag-Al alloy nanorods arrays for highly active and stable surface-enhanced Raman scattering substrates.
    Liu Y; Ma L; Zou S; Zhao F; Wang Y; Ling Y; Zhang Z
    Nanotechnology; 2019 Jun; 30(23):235703. PubMed ID: 30716729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodium nanocubes and nanotripods for highly sensitive ultraviolet surface-enhanced Raman spectroscopy.
    Das R; Soni RK
    Analyst; 2018 May; 143(10):2310-2322. PubMed ID: 29687108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preventing Aluminum Photocorrosion for Ultraviolet Plasmonics.
    Barulin A; Claude JB; Patra S; Moreau A; Lumeau J; Wenger J
    J Phys Chem Lett; 2019 Oct; 10(19):5700-5707. PubMed ID: 31503492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Plasmonics Using Aluminum and Copper Epitaxial Films on Mica.
    Quynh LT; Cheng CW; Huang CT; Raja SS; Mishra R; Yu MJ; Lu YJ; Gwo S
    ACS Nano; 2022 Apr; 16(4):5975-5983. PubMed ID: 35333048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.