These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31947978)
1. Preparation, Characterization, and Properties of Novel Ti-Zr-Be-Co Bulk Metallic Glasses. Gong P; Li F; Jin J Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947978 [TBL] [Abstract][Full Text] [Related]
2. Ni- and Be-free Zr-based bulk metallic glasses with high glass-forming ability and unusual plasticity. Zhu S; Xie G; Qin F; Wang X; Inoue A J Mech Behav Biomed Mater; 2012 Sep; 13():166-73. PubMed ID: 22898203 [TBL] [Abstract][Full Text] [Related]
3. Effect of Chemical Composition on the Thermoplastic Formability and Nanoindentation of Ti-Based Bulk Metallic Glasses. Chen M; Zhu L; Chen Y; Dai S; Liu Q; Xue N; Li W; Wang J; Huang Y; Yang K; Shao L Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612212 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-guided exploration and experimental assessment of unreported compositions in the quaternary Ti-Zr-Cu-Pd biocompatible metallic glass system. Douest Y; Forrest RM; Ter-Ovanessian B; Courtois N; Tancret F; Greer AL; Chevalier J; Fabrègue D Acta Biomater; 2024 Feb; 175():411-421. PubMed ID: 38135205 [TBL] [Abstract][Full Text] [Related]
5. Glass formation, chemical properties and surface analysis of Cu-based bulk metallic glasses. Qin C; Zhao W; Inoue A Int J Mol Sci; 2011; 12(4):2275-93. PubMed ID: 21731441 [TBL] [Abstract][Full Text] [Related]
6. High-temperature bulk metallic glasses developed by combinatorial methods. Li MX; Zhao SF; Lu Z; Hirata A; Wen P; Bai HY; Chen M; Schroers J; Liu Y; Wang WH Nature; 2019 May; 569(7754):99-103. PubMed ID: 31043727 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in bulk metallic glasses for biomedical applications. Li HF; Zheng YF Acta Biomater; 2016 May; 36():1-20. PubMed ID: 27045349 [TBL] [Abstract][Full Text] [Related]
8. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications. Hua N; Huang L; Chen W; He W; Zhang T Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():400-10. PubMed ID: 25280721 [TBL] [Abstract][Full Text] [Related]
9. Designing biocompatible Ti-based metallic glasses for implant applications. Calin M; Gebert A; Ghinea AC; Gostin PF; Abdi S; Mickel C; Eckert J Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):875-83. PubMed ID: 25427501 [TBL] [Abstract][Full Text] [Related]
10. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review. Kiani F; Wen C; Li Y Acta Biomater; 2020 Feb; 103():1-23. PubMed ID: 31881312 [TBL] [Abstract][Full Text] [Related]
11. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility. Zhou FY; Qiu KJ; Li HF; Huang T; Wang BL; Li L; Zheng YF Acta Biomater; 2013 Dec; 9(12):9578-87. PubMed ID: 23928334 [TBL] [Abstract][Full Text] [Related]
12. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses. Liu L; Qiu CL; Chen Q; Chan KC; Zhang SM J Biomed Mater Res A; 2008 Jul; 86(1):160-9. PubMed ID: 17957719 [TBL] [Abstract][Full Text] [Related]
13. Ti-Zr-Si-Nb Nanocrystalline Alloys and Metallic Glasses: Assessment on the Structural Development, Thermal Stability, Corrosion and Mechanical Properties. Gabor C; Cristea D; Velicu IL; Bedo T; Gatto A; Bassoli E; Varga B; Pop MA; Geanta V; Stefanoiu R; Codescu MM; Manta E; Patroi D; Florescu M; Munteanu SI; Ghiuta I; Lupu N; Munteanu D Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083618 [TBL] [Abstract][Full Text] [Related]
14. On the Potential of Bulk Metallic Glasses for Dental Implantology: Case Study on Ti Liens A; Etiemble A; Rivory P; Balvay S; Pelletier JM; Cardinal S; Fabrègue D; Kato H; Steyer P; Munhoz T; Adrien J; Courtois N; Hartmann DJ; Chevalier J Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29415490 [TBL] [Abstract][Full Text] [Related]
15. Fast Screening of Corrosion Trends in Metallic Glasses. Liu J; Liu N; Sun M; Li J; Sohn S; Schroers J ACS Comb Sci; 2019 Oct; 21(10):666-674. PubMed ID: 31525903 [TBL] [Abstract][Full Text] [Related]
16. Combinatorial development of bulk metallic glasses. Ding S; Liu Y; Li Y; Liu Z; Sohn S; Walker FJ; Schroers J Nat Mater; 2014 May; 13(5):494-500. PubMed ID: 24728462 [TBL] [Abstract][Full Text] [Related]
17. Tailoring biocompatible Ti-Zr-Nb-Hf-Si metallic glasses based on high-entropy alloys design approach. Calin M; Vishnu J; Thirathipviwat P; Popa MM; Krautz M; Manivasagam G; Gebert A Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111733. PubMed ID: 33579507 [TBL] [Abstract][Full Text] [Related]
18. Imprinting bulk amorphous alloy at room temperature. Kim SY; Park ES; Ott RT; Lograsso TA; Huh MY; Kim DH; Eckert J; Lee MH Sci Rep; 2015 Nov; 5():16540. PubMed ID: 26563908 [TBL] [Abstract][Full Text] [Related]
19. Simulated body fluid electrochemical response of Zr-based metallic glasses with different degrees of crystallization. Huang CH; Huang JC; Li JB; Jang JS Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4183-7. PubMed ID: 23910331 [TBL] [Abstract][Full Text] [Related]
20. In Situ Synchrotron X-Ray Diffraction Characterization of Corrosion Products of a Ti-Based Metallic Glass for Implant Applications. Gostin PF; Addison O; Morrell AP; Zhang Y; Cook AJMC; Liens A; Stoica M; Ignatyev K; Street SR; Wu J; Chiu YL; Davenport AJ Adv Healthc Mater; 2018 Nov; 7(21):e1800338. PubMed ID: 30221474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]