These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31948005)

  • 21. Research on the Properties and Mechanism of Carbon Nanotubes Reinforced Low-Carbon Ecological Cement-Based Materials.
    Cui K; Zhang J; Chang J; Sabri MMS; Huang J
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of Graphene Nanoplatelets Dispersion and Its Performance in Cement Mortars.
    Zhou Y; Wang Y; Gao T; Ling Y; Jiang N; Tawfek AM; Yuan H
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lignin-Modified Carbon Nanotube/Graphene Hybrid Coating as Efficient Flame Retardant.
    Song K; Ganguly I; Eastin I; Dichiara AB
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29117109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Industrial Waste Utilization of Carbon Dust in Sustainable Cementitious Composites Production.
    Irshidat MR; Al-Nuaimi N
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micro-Nano Carbon Structures with Platelet, Glassy and Tube-Like Morphologies.
    Liu M; Huang J; Xiong Q; Wang S; Chen Z; Li X; Liu Q; Zhang S
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31480493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon hybrid fillers composed of carbon nanotubes directly grown on graphene nanoplatelets for effective thermal conductivity in epoxy composites.
    Yu L; Park JS; Lim YS; Lee CS; Shin K; Moon HJ; Yang CM; Lee YS; Han JH
    Nanotechnology; 2013 Apr; 24(15):155604. PubMed ID: 23529153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphite nanoplatelets/multiwalled carbon nanotubes hybrid nanostructure for electrochemical capacitor.
    Mishra AK; Ramaprabhu S
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6658-64. PubMed ID: 22962803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Treatment of Carbon Nanotubes Using Modified Tapioca Starch for Improved Force Detection Consistency in Smart Cementitious Materials.
    Chia L; Blazanin G; Huang Y; Rashid US; Lu P; Simsek S; N Bezbaruah A
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32709037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Electrical Properties of Hybrid Composites Based on Multiwall Carbon Nanotubes with Graphite Nanoplatelets.
    Perets Y; Aleksandrovych L; Melnychenko M; Lazarenko O; Vovchenko L; Matzui L
    Nanoscale Res Lett; 2017 Dec; 12(1):406. PubMed ID: 28618717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nano-Silica Sol-Gel and Carbon Nanotube Coupling Effect on the Performance of Cement-Based Materials.
    Li W; Ji W; Torabian Isfahani F; Wang Y; Li G; Liu Y; Xing F
    Nanomaterials (Basel); 2017 Jul; 7(7):. PubMed ID: 28708097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load.
    Szeląg M
    Nanomaterials (Basel); 2017 Sep; 7(9):. PubMed ID: 28891976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tribological performance of Graphene/Carbon nanotube hybrid reinforced Al2O3 composites.
    Yazdani B; Xu F; Ahmad I; Hou X; Xia Y; Zhu Y
    Sci Rep; 2015 Jun; 5():11579. PubMed ID: 26100097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergy effect in hybrid nanocomposites based on carbon nanotubes and graphene nanoplatelets.
    Gbaguidi A; Namilae S; Kim D
    Nanotechnology; 2020 Apr; 31(25):255704. PubMed ID: 32168500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Smart Cementitious Sensors with Nano-, Micro-, and Hybrid-Modified Reinforcement: Mechanical and Electrical Properties.
    Thomoglou AK; Falara MG; Gkountakou FI; Elenas A; Chalioris CE
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rheological behavior of carbon nanotube and graphite nanoparticle dispersions.
    Yang Y; Grulke EA; Zhang ZG; Wu G
    J Nanosci Nanotechnol; 2005 Apr; 5(4):571-9. PubMed ID: 16004121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of polymer based nanocomposites with carbon nanotubes.
    Ciecierska E; Boczkowska A; Kurzydłowski KJ
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2690-9. PubMed ID: 24734681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties.
    Xiang S; Wang X; Gupta M; Wu K; Hu X; Zheng M
    Sci Rep; 2016 Dec; 6():38824. PubMed ID: 27941839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Progress in Nanomaterials for Modern Concrete Infrastructure: Advantages and Challenges.
    Bautista-Gutierrez KP; Herrera-May AL; Santamaría-López JM; Honorato-Moreno A; Zamora-Castro SA
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-graphite hybrid epoxy composites with controllable workability for thermal management.
    Levy I; Wormser EM; Varenik M; Buzaglo M; Nadiv R; Regev O
    Beilstein J Nanotechnol; 2019; 10():95-104. PubMed ID: 30680282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a Novel Multifunctional Cementitious-Based Geocomposite by the Contribution of CNT and GNP.
    Abedi M; Fangueiro R; Correia AG
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.