BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 31948014)

  • 1. Modification of Rigid Polyurethane Foams with the Addition of Nano-SiO
    Zhang Q; Lin X; Chen W; Zhang H; Han D
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31948014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open-Cell Rigid Polyurethane Foams from Peanut Shell-Derived Polyols Prepared under Different Post-Processing Conditions.
    Zhang G; Wu Y; Chen W; Han D; Lin X; Xu G; Zhang Q
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31450807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-flammability, mechanical and thermal properties of bio-based rigid polyurethane foams with the addition of flame retardants.
    Zhang G; Lin X; Zhang Q; Jiang K; Chen W; Han D
    RSC Adv; 2020 Aug; 10(53):32156-32161. PubMed ID: 35518161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wood Flour Modified by Poly(furfuryl alcohol) as a Filler in Rigid Polyurethane Foams: Effect on Water Uptake.
    Acosta A; Aramburu AB; Beltrame R; Gatto DA; Amico S; Labidi J; Delucis RA
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-Effective Fabrication of Modified Palygorskite-Reinforced Rigid Polyurethane Foam Nanocomposites.
    Wang Y; Cui K; Fang B; Wang F
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fly Ash as an Eco-Friendly Filler for Rigid Polyurethane Foams Modification.
    Kuźnia M; Magiera A; Zygmunt-Kowalska B; Kaczorek-Chrobak K; Pielichowska K; Szatkowski P; Benko A; Ziąbka M; Jerzak W
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Analysis of the Influence of Expanded Vermiculite on the Foaming Process and Selected Properties of Composite Rigid Polyurethane Foams.
    Barczewski M; Kurańska M; Sałasińska K; Aniśko J; Szulc J; Szafraniak-Wiza I; Prociak A; Polaczek K; Uram K; Surmacz K; Piasecki A
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigid Polyurethane Foams as Thermal Insulation Material from Novel Suberinic Acid-Based Polyols.
    Ivdre A; Abolins A; Volkovs N; Vevere L; Paze A; Makars R; Godina D; Rizikovs J
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Characterization of Wood Rigid Polyurethane Composites.
    Bradai H; Koubaa A; Bouafif H; Langlois A; Samet B
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composites of Rigid Polyurethane Foams Reinforced with POSS.
    Członka S; Strąkowska A; Strzelec K; Adamus-Włodarczyk A; Kairytė A; Vaitkus S
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and Effect of Methyl-Oleate-Based Polyol on the Properties of Rigid Polyurethane Foams as Potential Thermal Insulation Material.
    Kamairudin N; Abdullah LC; Hoong SS; Biak DRA; Ariffin H
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement Efficiency of Cellulose Microfibers for the Tensile Stiffness and Strength of Rigid Low-Density Polyurethane Foams.
    Andersons J; Kirpluks M; Cabulis U
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32549317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greener Nanocomposite Polyurethane Foam Based on Sustainable Polyol and Natural Fillers: Investigation of Chemico-Physical and Mechanical Properties.
    De Luca Bossa F; Santillo C; Verdolotti L; Campaner P; Minigher A; Boggioni L; Losio S; Coccia F; Iannace S; Lama GC
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Insulative PEG-Grafted Cellulose Polyurethane Foams-From Synthesis to Application Properties.
    Grząbka-Zasadzińska A; Bartczak P; Borysiak S
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural Oil-Based Rigid Polyurethane Foam Thermal Insulation Applicable at Cryogenic Temperatures.
    Uram K; Prociak A; Vevere L; Pomilovskis R; Cabulis U; Kirpluks M
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-Based Rigid Polyurethane Foams Modified with C-MOF/MWCNTs and TBPBP as Building Insulation Materials: Synergistic Effect and Corresponding Mechanism for Enhancing Fire and Smoke Safety.
    Bo G; Xu X; Tian X; Yan J; Su X; Yan Y
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyurethane Foam Composites Reinforced with Renewable Fillers for Cryogenic Insulation.
    Sture B; Vevere L; Kirpluks M; Godina D; Fridrihsone A; Cabulis U
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams.
    Leszczyńska M; Malewska E; Ryszkowska J; Kurańska M; Gloc M; Leszczyński MK; Prociak A
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluidized bed combustion fly ash as filler in composite polyurethane materials.
    Kuźnia M; Magiera A; Pielichowska K; Ziąbka M; Benko A; Szatkowski P; Jerzak W
    Waste Manag; 2019 Jun; 92():115-123. PubMed ID: 31160020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rigid Polyurethane Biofoams Filled with Pine Seed Shell and Yerba Mate Wastes.
    Acosta AP; Kairytė A; Członka S; Miedzińska K; Aramburu AB; Barbosa KT; Amico SC; Delucis RA
    Polymers (Basel); 2023 May; 15(9):. PubMed ID: 37177340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.