BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 31948289)

  • 21. The gut microbiota as a novel regulator of cardiovascular function and disease.
    Battson ML; Lee DM; Weir TL; Gentile CL
    J Nutr Biochem; 2018 Jun; 56():1-15. PubMed ID: 29427903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes.
    Zhu T; Goodarzi MO
    Curr Nutr Rep; 2020 Jun; 9(2):83-93. PubMed ID: 32157661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gut Microbiota-Derived Mediators as Potential Markers in Nonalcoholic Fatty Liver Disease.
    Aragonès G; González-García S; Aguilar C; Richart C; Auguet T
    Biomed Res Int; 2019; 2019():8507583. PubMed ID: 30719448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gut metagenomic and short chain fatty acids signature in hypertension: a cross-sectional study.
    Calderón-Pérez L; Gosalbes MJ; Yuste S; Valls RM; Pedret A; Llauradó E; Jimenez-Hernandez N; Artacho A; Pla-Pagà L; Companys J; Ludwig I; Romero MP; Rubió L; Solà R
    Sci Rep; 2020 Apr; 10(1):6436. PubMed ID: 32296109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles.
    Abdul Rahim MBH; Chilloux J; Martinez-Gili L; Neves AL; Myridakis A; Gooderham N; Dumas ME
    Acta Diabetol; 2019 May; 56(5):493-500. PubMed ID: 30903435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TMA/TMAO in Hypertension: Novel Horizons and Potential Therapies.
    Zhang WQ; Wang YJ; Zhang A; Ding YJ; Zhang XN; Jia QJ; Zhu YP; Li YY; Lv SC; Zhang JP
    J Cardiovasc Transl Res; 2021 Dec; 14(6):1117-1124. PubMed ID: 33709384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases.
    Stec A; Sikora M; Maciejewska M; Paralusz-Stec K; Michalska M; Sikorska E; Rudnicka L
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dietary lipids, gut microbiota and lipid metabolism.
    Schoeler M; Caesar R
    Rev Endocr Metab Disord; 2019 Dec; 20(4):461-472. PubMed ID: 31707624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease.
    Shin Y; Han S; Kwon J; Ju S; Choi TG; Kang I; Kim SS
    Nutrients; 2023 Oct; 15(20):. PubMed ID: 37892541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Role of the Gut Microbiome and Trimethylamine Oxide in Atherosclerosis and Age-Related Disease.
    El Hage R; Al-Arawe N; Hinterseher I
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting the human microbiome and its metabolite TMAO in cardiovascular prevention and therapy.
    Dannenberg L; Zikeli D; Benkhoff M; Ahlbrecht S; Kelm M; Levkau B; Polzin A
    Pharmacol Ther; 2020 Sep; 213():107584. PubMed ID: 32446759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gut Microbiota-Kidney Cross-Talk in Acute Kidney Injury.
    Gong J; Noel S; Pluznick JL; Hamad ARA; Rabb H
    Semin Nephrol; 2019 Jan; 39(1):107-116. PubMed ID: 30606403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Role of Gut Microbiota and Trimethylamine N-oxide in Cardiovascular Diseases.
    Huang Y; Zhang H; Fan X; Wang J; Yin Y; Zhang Y; Shi K; Yu F
    J Cardiovasc Transl Res; 2023 Jun; 16(3):581-589. PubMed ID: 36251229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases.
    Sun M; Wu W; Liu Z; Cong Y
    J Gastroenterol; 2017 Jan; 52(1):1-8. PubMed ID: 27448578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cranberries attenuate animal-based diet-induced changes in microbiota composition and functionality: a randomized crossover controlled feeding trial.
    Rodríguez-Morató J; Matthan NR; Liu J; de la Torre R; Chen CO
    J Nutr Biochem; 2018 Dec; 62():76-86. PubMed ID: 30269035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial Peer Pressure: The Role of the Gut Microbiota in Hypertension and Its Complications.
    Muralitharan RR; Jama HA; Xie L; Peh A; Snelson M; Marques FZ
    Hypertension; 2020 Dec; 76(6):1674-1687. PubMed ID: 33012206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contributory Role of Gut Microbiota and Their Metabolites Toward Cardiovascular Complications in Chronic Kidney Disease.
    Li DY; Tang WHW
    Semin Nephrol; 2018 Mar; 38(2):193-205. PubMed ID: 29602401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trimethylamine/Trimethylamine-N-Oxide as a Key Between Diet and Cardiovascular Diseases.
    He S; Jiang H; Zhuo C; Jiang W
    Cardiovasc Toxicol; 2021 Aug; 21(8):593-604. PubMed ID: 34003426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis.
    Li Q; Chen H; Zhang M; Wu T; Liu R
    Food Funct; 2019 Nov; 10(11):7174-7187. PubMed ID: 31602443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health.
    Nogal A; Valdes AM; Menni C
    Gut Microbes; 2021; 13(1):1-24. PubMed ID: 33764858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.