BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31948726)

  • 1. Conformational Dynamics and Functional Implications of Phosphorylated β-Arrestins.
    Kang H; Yang HS; Ki AY; Ko SB; Kim KW; Shim CY; Kim K; Choi HJ; Chung KY
    Structure; 2020 Mar; 28(3):314-323.e3. PubMed ID: 31948726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation-dependent conformational changes in {beta}-arrestin 2.
    Xiao K; Shenoy SK; Nobles K; Lefkowitz RJ
    J Biol Chem; 2004 Dec; 279(53):55744-53. PubMed ID: 15501822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation.
    Mayer D; Damberger FF; Samarasimhareddy M; Feldmueller M; Vuckovic Z; Flock T; Bauer B; Mutt E; Zosel F; Allain FHT; Standfuss J; Schertler GFX; Deupi X; Sommer ME; Hurevich M; Friedler A; Veprintsev DB
    Nat Commun; 2019 Mar; 10(1):1261. PubMed ID: 30890705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization.
    Zarca A; Perez C; van den Bor J; Bebelman JP; Heuninck J; de Jonker RJF; Durroux T; Vischer HF; Siderius M; Smit MJ
    Cells; 2021 Mar; 10(3):. PubMed ID: 33799570
    [No Abstract]   [Full Text] [Related]  

  • 5. Visualization of arrestin recruitment by a G-protein-coupled receptor.
    Shukla AK; Westfield GH; Xiao K; Reis RI; Huang LY; Tripathi-Shukla P; Qian J; Li S; Blanc A; Oleskie AN; Dosey AM; Su M; Liang CR; Gu LL; Shan JM; Chen X; Hanna R; Choi M; Yao XJ; Klink BU; Kahsai AW; Sidhu SS; Koide S; Penczek PA; Kossiakoff AA; Woods VL; Kobilka BK; Skiniotis G; Lefkowitz RJ
    Nature; 2014 Aug; 512(7513):218-222. PubMed ID: 25043026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide.
    Shukla AK; Manglik A; Kruse AC; Xiao K; Reis RI; Tseng WC; Staus DP; Hilger D; Uysal S; Huang LY; Paduch M; Tripathi-Shukla P; Koide A; Koide S; Weis WI; Kossiakoff AA; Kobilka BK; Lefkowitz RJ
    Nature; 2013 May; 497(7447):137-41. PubMed ID: 23604254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2.
    He QT; Xiao P; Huang SM; Jia YL; Zhu ZL; Lin JY; Yang F; Tao XN; Zhao RJ; Gao FY; Niu XG; Xiao KH; Wang J; Jin C; Sun JP; Yu X
    Nat Commun; 2021 Apr; 12(1):2396. PubMed ID: 33888704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different conformational dynamics of various active states of β-arrestin1 analyzed by hydrogen/deuterium exchange mass spectrometry.
    Kim DK; Yun Y; Kim HR; Seo MD; Chung KY
    J Struct Biol; 2015 May; 190(2):250-9. PubMed ID: 25871523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation-induced conformation of β
    Shiraishi Y; Natsume M; Kofuku Y; Imai S; Nakata K; Mizukoshi T; Ueda T; Iwaï H; Shimada I
    Nat Commun; 2018 Jan; 9(1):194. PubMed ID: 29335412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational differences between arrestin2 and pre-activated mutants as revealed by hydrogen exchange mass spectrometry.
    Carter JM; Gurevich VV; Prossnitz ER; Engen JR
    J Mol Biol; 2005 Aug; 351(4):865-78. PubMed ID: 16045931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-Arrestin-biased AT1R stimulation promotes extracellular matrix synthesis in renal fibrosis.
    Wang Y; Huang J; Liu X; Niu Y; Zhao L; Yu Y; Zhou L; Lu L; Yu C
    Am J Physiol Renal Physiol; 2017 Jul; 313(1):F1-F8. PubMed ID: 28274926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Mechanism of the Arrestin-3/JNK3 Interaction.
    Park JY; Qu CX; Li RR; Yang F; Yu X; Tian ZM; Shen YM; Cai BY; Yun Y; Sun JP; Chung KY
    Structure; 2019 Jul; 27(7):1162-1170.e3. PubMed ID: 31080119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells.
    Haider RS; Matthees ESF; Drube J; Reichel M; Zabel U; Inoue A; Chevigné A; Krasel C; Deupi X; Hoffmann C
    Nat Commun; 2022 Sep; 13(1):5638. PubMed ID: 36163356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-arrestin is critical for early shear stress-induced Akt/eNOS activation in human vascular endothelial cells.
    Carneiro AP; Fonseca-Alaniz MH; Dallan LAO; Miyakawa AA; Krieger JE
    Biochem Biophys Res Commun; 2017 Jan; 483(1):75-81. PubMed ID: 28062183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BRET-based assay to specifically monitor β
    Parichatikanond W; Kyaw ETH; Madreiter-Sokolowski CT; Mangmool S
    Methods Cell Biol; 2021; 166():67-81. PubMed ID: 34752340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Structure of β-Arrestin 2 in Complex with CXCR7 Phosphopeptide.
    Min K; Yoon HJ; Park JY; Baidya M; Dwivedi-Agnihotri H; Maharana J; Chaturvedi M; Chung KY; Shukla AK; Lee HH
    Structure; 2020 Sep; 28(9):1014-1023.e4. PubMed ID: 32579945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Insights into Phosphorylation-Induced Allosteric Conformational Changes in a β
    Madhu MK; Debroy A; Murarka RK
    J Phys Chem B; 2022 Mar; 126(9):1917-1932. PubMed ID: 35196859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-arrestin mediates desensitization and internalization but does not affect dephosphorylation of the thyrotropin-releasing hormone receptor.
    Jones BW; Hinkle PM
    J Biol Chem; 2005 Nov; 280(46):38346-54. PubMed ID: 16183993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different conformational dynamics of β-arrestin1 and β-arrestin2 analyzed by hydrogen/deuterium exchange mass spectrometry.
    Yun Y; Kim DK; Seo MD; Kim KM; Chung KY
    Biochem Biophys Res Commun; 2015 Jan; 457(1):50-7. PubMed ID: 25542150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses.
    Oakley RH; Olivares-Reyes JA; Hudson CC; Flores-Vega F; Dautzenberg FM; Hauger RL
    Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R209-22. PubMed ID: 17363685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.