These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31948834)

  • 1. Hemiarthroplasties: the choice of prosthetic material causes different levels of damage in the articular cartilage.
    Ajdari N; Tempelaere C; Masouleh MI; Abel R; Delfosse D; Emery R; Dini D; Hansen U
    J Shoulder Elbow Surg; 2020 May; 29(5):1019-1029. PubMed ID: 31948834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wear and damage of articular cartilage with friction against orthopedic implant materials.
    Oungoulian SR; Durney KM; Jones BK; Ahmad CS; Hung CT; Ateshian GA
    J Biomech; 2015 Jul; 48(10):1957-64. PubMed ID: 25912663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of cobalt chromium, ceramic and pyrocarbon hemiprosthesis in a rabbit model: Ceramic leads to more cartilage damage than cobalt chromium.
    Jung M; Wieloch P; Lorenz H; Gotterbarm T; Veyel K; Daniels M; Martini AK; Daecke W
    J Biomed Mater Res B Appl Biomater; 2008 May; 85(2):427-34. PubMed ID: 17973249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Articulation of Native Cartilage Against Different Femoral Component Materials. Oxidized Zirconium Damages Cartilage Less Than Cobalt-Chrome.
    Vanlommel J; De Corte R; Luyckx JP; Anderson M; Labey L; Bellemans J
    J Arthroplasty; 2017 Jan; 32(1):256-262. PubMed ID: 27452139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles.
    Tsaousi A; Jones E; Case CP
    Mutat Res; 2010 Mar; 697(1-2):1-9. PubMed ID: 20139029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage.
    Kanca Y; Milner P; Dini D; Amis AA
    J Mech Behav Biomed Mater; 2018 Jun; 82():394-402. PubMed ID: 29660649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of the articular cartilage to weight-bearing: comparison of hemiarthroplasty with ceramic and cobalt-chromium head in dogs.
    Maistrelli G; Sessa V; Fornasier VL
    Ital J Orthop Traumatol; 1991 Sep; 17(3):387-93. PubMed ID: 1783553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tribological evaluation of oxidized zirconium using an articular cartilage counterface: a novel material for potential use in hemiarthroplasty.
    Patel AM; Spector M
    Biomaterials; 1997 Mar; 18(5):441-7. PubMed ID: 9061186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of the effect of conformity of knee hemiarthroplasty designs on contact stress, friction and degeneration of articular cartilage: a tribological study.
    McCann L; Ingham E; Jin Z; Fisher J
    J Biomech; 2009 Jun; 42(9):1326-31. PubMed ID: 19380137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary Shoulder Hemiarthroplasty: What Can Be Learned From 359 Cases That Were Surgically Revised?
    Hackett DJ; Hsu JE; Matsen FA
    Clin Orthop Relat Res; 2018 May; 476(5):1031-1040. PubMed ID: 29470237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyurethane as a potential knee hemiarthroplasty biomaterial: an in-vitro simulation of its tribological performance.
    Luo Y; McCann L; Ingham E; Jin ZM; Ge S; Fisher J
    Proc Inst Mech Eng H; 2010; 224(3):415-25. PubMed ID: 20408487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface and form alterations in retrieved shoulder hemiarthroplasty.
    Bülhoff M; Reinders J; Zeifang F; Raiss P; Müller U; Kretzer JP
    J Shoulder Elbow Surg; 2017 Mar; 26(3):521-528. PubMed ID: 27727057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device.
    McKellop H; Clarke I; Markolf K; Amstutz H
    J Biomed Mater Res; 1981 Sep; 15(5):619-53. PubMed ID: 12659132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of phospholipidic boundary lubrication in rigid and compliant hemiarthroplasty models.
    Foy JR; Williams PF; Powell GL; Ishihara K; Nakabayashi N; LaBerge M
    Proc Inst Mech Eng H; 1999; 213(1):5-18. PubMed ID: 10087900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of hemiarthroplasty implant modulus on contact mechanics: an experimental investigation.
    Berkmortel CJ; Szmit J; Langohr GD; King GJW; Johnson JA
    J Shoulder Elbow Surg; 2021 Dec; 30(12):2845-2851. PubMed ID: 34293420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-tribological behavior of articular cartilage based on biological morphology.
    Zhang X; Hu Y; Chen K; Zhang D
    J Mater Sci Mater Med; 2021 Oct; 32(11):132. PubMed ID: 34677698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemiarthroplasty implants should have very low stiffness to optimize cartilage contact stress.
    Berkmortel C; Langohr GDG; King G; Johnson J
    J Orthop Res; 2020 Aug; 38(8):1719-1726. PubMed ID: 32017162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoelastic distal ulnar head prosthesis: an in vitro joint simulator study.
    Naidu SH; Radin A
    J Hand Surg Am; 2009 Mar; 34(3):409-14. PubMed ID: 19258137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of fibrocartilage regeneration and bone response at full-thickness cartilage defects in articulation with pyrolytic carbon or cobalt-chromium alloy hemiarthroplasties.
    Kawalec JS; Hetherington VJ; Melillo TC; Corbin N
    J Biomed Mater Res; 1998 Sep; 41(4):534-40. PubMed ID: 9697025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tribological evaluation of a novel hybrid for repair of articular cartilage defects.
    Parkes M; Tallia F; Young GR; Cann P; Jones JR; Jeffers JRT
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111495. PubMed ID: 33321596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.