These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31950087)

  • 1. Carbon-boron clathrates as a new class of sp
    Zhu L; Borstad GM; Liu H; Guńka PA; Guerette M; Dolyniuk JA; Meng Y; Greenberg E; Prakapenka VB; Chaloux BL; Epshteyn A; Cohen RE; Strobel TA
    Sci Adv; 2020 Jan; 6(2):eaay8361. PubMed ID: 31950087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lanthanum-Filled Carbon-Boron Clathrate.
    Strobel TA; Zhu L; Guńka PA; Borstad GM; Guerette M
    Angew Chem Int Ed Engl; 2021 Feb; 60(6):2877-2881. PubMed ID: 33085819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Screening and Stabilization of Boron-Substituted Type-I and Type-II Carbon Clathrates.
    Bi T; Eggers BT; Cohen RE; Campbell BJ; Strobel T
    J Am Chem Soc; 2024 Mar; 146(12):7985-7997. PubMed ID: 38051138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unconventional Clathrates with Transition Metal-Phosphorus Frameworks.
    Wang J; Dolyniuk JA; Kovnir K
    Acc Chem Res; 2018 Jan; 51(1):31-39. PubMed ID: 29256588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of novel boron-carbon based clathrates.
    Cui Z; Zhang X; Sun Y; Liu Y; Yang G
    Phys Chem Chem Phys; 2022 Jul; 24(27):16884-16890. PubMed ID: 35789236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Type II Silicon Clathrate with Lithium Guests through Thermal Diffusion.
    Liu Y; Briggs JP; Majid AAA; Furtak TE; Walker M; Singh M; Koh CA; Taylor PC; Collins RT
    Inorg Chem; 2023 May; 62(18):6882-6892. PubMed ID: 36715366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba
    Dolyniuk JA; Zaikina JV; Kaseman DC; Sen S; Kovnir K
    Angew Chem Int Ed Engl; 2017 Feb; 56(9):2418-2422. PubMed ID: 28097775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host-Guest Hydrogen Bonding in High-Pressure Acetone Clathrate Hydrates:
    Pakhomova A; Collings IE; Journaux B; Petitgirard S; Boffa Ballaran T; Huang D; Ott J; Kurnosov A; Hanfland M; Garbarino G; Comboni D
    J Phys Chem Lett; 2022 Feb; 13(7):1833-1838. PubMed ID: 35171613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guest-framework interaction in type I inorganic clathrates with promising thermoelectric properties: on the ionic versus neutral nature of the alkaline-earth metal guest A in A8Ga16Ge30 (A=Sr, Ba).
    Gatti C; Bertini L; Blake NP; Iversen BB
    Chemistry; 2003 Sep; 9(18):4556-68. PubMed ID: 14502642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of guest-host hydrogen bonding on the structures and properties of clathrate hydrates.
    Alavi S; Udachin K; Ripmeester JA
    Chemistry; 2010 Jan; 16(3):1017-25. PubMed ID: 19946907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of clathrate structure type and guest position by molecular mechanics.
    Fleischer EB; Janda KC
    J Phys Chem A; 2013 May; 117(19):4001-10. PubMed ID: 23600658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of an Extended Ferroelectric Clathrate.
    Zhu L; Strobel TA; Cohen RE
    Phys Rev Lett; 2020 Sep; 125(12):127601. PubMed ID: 33016718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate.
    Falenty A; Hansen TC; Kuhs WF
    Nature; 2014 Dec; 516(7530):231-3. PubMed ID: 25503235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, structure, and transport properties of type-I derived clathrate Ge(46-x)P(x)Se(8-y) (x = 15.4(1); y = 0-2.65) with diverse host-guest bonding.
    Kirsanova MA; Mori T; Maruyama S; Matveeva M; Batuk D; Abakumov AM; Gerasimenko AV; Olenev AV; Grin Y; Shevelkov AV
    Inorg Chem; 2013 Jan; 52(2):577-88. PubMed ID: 23276305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiconducting clathrates meet gas hydrates: Xe₂₄[Sn₁₃₆].
    Karttunen AJ; Fässler TF
    Chemistry; 2014 May; 20(22):6693-8. PubMed ID: 24789147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Systematic Protocol for Benchmarking Guest-Host Interactions by First-Principles Computations: Capturing CO
    Arismendi-Arrieta DJ; Valdés Á; Prosmiti R
    Chemistry; 2018 Jul; 24(37):9353-9363. PubMed ID: 29600599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deviation from guest dominated glass like lattice dynamics in prototypical ternary Ba
    Bhattacharya A
    J Phys Condens Matter; 2020 Apr; 32(17):175502. PubMed ID: 31935696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiclathrates of the Ge-P-Te system: synthesis and crystal structures.
    Kirsanova MA; Reshetova LN; Olenev AV; Abakumov AM; Shevelkov AV
    Chemistry; 2011 May; 17(20):5719-26. PubMed ID: 21469231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular dynamics study of guest-host hydrogen bonding in alcohol clathrate hydrates.
    Hiratsuka M; Ohmura R; Sum AK; Alavi S; Yasuoka K
    Phys Chem Chem Phys; 2015 May; 17(19):12639-47. PubMed ID: 25905113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile and Resilient Hydrogen-Bonded Host Frameworks.
    Adachi T; Ward MD
    Acc Chem Res; 2016 Dec; 49(12):2669-2679. PubMed ID: 27689535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.