These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31950087)
1. Carbon-boron clathrates as a new class of sp Zhu L; Borstad GM; Liu H; Guńka PA; Guerette M; Dolyniuk JA; Meng Y; Greenberg E; Prakapenka VB; Chaloux BL; Epshteyn A; Cohen RE; Strobel TA Sci Adv; 2020 Jan; 6(2):eaay8361. PubMed ID: 31950087 [TBL] [Abstract][Full Text] [Related]
2. A Lanthanum-Filled Carbon-Boron Clathrate. Strobel TA; Zhu L; Guńka PA; Borstad GM; Guerette M Angew Chem Int Ed Engl; 2021 Feb; 60(6):2877-2881. PubMed ID: 33085819 [TBL] [Abstract][Full Text] [Related]
3. Computational Screening and Stabilization of Boron-Substituted Type-I and Type-II Carbon Clathrates. Bi T; Eggers BT; Cohen RE; Campbell BJ; Strobel T J Am Chem Soc; 2024 Mar; 146(12):7985-7997. PubMed ID: 38051138 [TBL] [Abstract][Full Text] [Related]
4. Unconventional Clathrates with Transition Metal-Phosphorus Frameworks. Wang J; Dolyniuk JA; Kovnir K Acc Chem Res; 2018 Jan; 51(1):31-39. PubMed ID: 29256588 [TBL] [Abstract][Full Text] [Related]
5. Prediction of novel boron-carbon based clathrates. Cui Z; Zhang X; Sun Y; Liu Y; Yang G Phys Chem Chem Phys; 2022 Jul; 24(27):16884-16890. PubMed ID: 35789236 [TBL] [Abstract][Full Text] [Related]
6. Formation of Type II Silicon Clathrate with Lithium Guests through Thermal Diffusion. Liu Y; Briggs JP; Majid AAA; Furtak TE; Walker M; Singh M; Koh CA; Taylor PC; Collins RT Inorg Chem; 2023 May; 62(18):6882-6892. PubMed ID: 36715366 [TBL] [Abstract][Full Text] [Related]
7. Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba Dolyniuk JA; Zaikina JV; Kaseman DC; Sen S; Kovnir K Angew Chem Int Ed Engl; 2017 Feb; 56(9):2418-2422. PubMed ID: 28097775 [TBL] [Abstract][Full Text] [Related]
9. Guest-framework interaction in type I inorganic clathrates with promising thermoelectric properties: on the ionic versus neutral nature of the alkaline-earth metal guest A in A8Ga16Ge30 (A=Sr, Ba). Gatti C; Bertini L; Blake NP; Iversen BB Chemistry; 2003 Sep; 9(18):4556-68. PubMed ID: 14502642 [TBL] [Abstract][Full Text] [Related]
10. Effect of guest-host hydrogen bonding on the structures and properties of clathrate hydrates. Alavi S; Udachin K; Ripmeester JA Chemistry; 2010 Jan; 16(3):1017-25. PubMed ID: 19946907 [TBL] [Abstract][Full Text] [Related]
11. Prediction of clathrate structure type and guest position by molecular mechanics. Fleischer EB; Janda KC J Phys Chem A; 2013 May; 117(19):4001-10. PubMed ID: 23600658 [TBL] [Abstract][Full Text] [Related]
12. Prediction of an Extended Ferroelectric Clathrate. Zhu L; Strobel TA; Cohen RE Phys Rev Lett; 2020 Sep; 125(12):127601. PubMed ID: 33016718 [TBL] [Abstract][Full Text] [Related]
13. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Falenty A; Hansen TC; Kuhs WF Nature; 2014 Dec; 516(7530):231-3. PubMed ID: 25503235 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, structure, and transport properties of type-I derived clathrate Ge(46-x)P(x)Se(8-y) (x = 15.4(1); y = 0-2.65) with diverse host-guest bonding. Kirsanova MA; Mori T; Maruyama S; Matveeva M; Batuk D; Abakumov AM; Gerasimenko AV; Olenev AV; Grin Y; Shevelkov AV Inorg Chem; 2013 Jan; 52(2):577-88. PubMed ID: 23276305 [TBL] [Abstract][Full Text] [Related]