These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31950132)

  • 1. Deep learning for drug response prediction in cancer.
    Baptista D; Ferreira PG; Rocha M
    Brief Bioinform; 2021 Jan; 22(1):360-379. PubMed ID: 31950132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting drug response of tumors from integrated genomic profiles by deep neural networks.
    Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches.
    Güvenç Paltun B; Mamitsuka H; Kaski S
    Brief Bioinform; 2021 Jan; 22(1):346-359. PubMed ID: 31838491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning of pharmacogenomics resources: moving towards precision oncology.
    Chiu YC; Chen HH; Gorthi A; Mostavi M; Zheng S; Huang Y; Chen Y
    Brief Bioinform; 2020 Dec; 21(6):2066-2083. PubMed ID: 31813953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.
    Preuer K; Lewis RPI; Hochreiter S; Bender A; Bulusu KC; Klambauer G
    Bioinformatics; 2018 May; 34(9):1538-1546. PubMed ID: 29253077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic evaluation of deep learning methods for the prediction of drug synergy in cancer.
    Baptista D; Ferreira PG; Rocha M
    PLoS Comput Biol; 2023 Mar; 19(3):e1010200. PubMed ID: 36952569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Deep Learning Framework for Predicting Response to Therapy in Cancer.
    Sakellaropoulos T; Vougas K; Narang S; Koinis F; Kotsinas A; Polyzos A; Moss TJ; Piha-Paul S; Zhou H; Kardala E; Damianidou E; Alexopoulos LG; Aifantis I; Townsend PA; Panayiotidis MI; Sfikakis P; Bartek J; Fitzgerald RC; Thanos D; Mills Shaw KR; Petty R; Tsirigos A; Gorgoulis VG
    Cell Rep; 2019 Dec; 29(11):3367-3373.e4. PubMed ID: 31825821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic analysis of deep learning in genomics and histopathology for precision oncology.
    Unger M; Kather JN
    BMC Med Genomics; 2024 Feb; 17(1):48. PubMed ID: 38317154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of anti-cancer drug response by kernelized multi-task learning.
    Tan M
    Artif Intell Med; 2016 Oct; 73():70-77. PubMed ID: 27926382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep-learning techniques.
    Singh DP; Kaushik B
    Chem Biol Drug Des; 2023 Jan; 101(1):175-194. PubMed ID: 36303299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Advances and Limitations of Deep Learning in Anticancer Drug Sensitivity Prediction.
    Tan X; Yu Y; Duan K; Zhang J; Sun P; Sun H
    Curr Top Med Chem; 2020; 20(21):1858-1867. PubMed ID: 32648840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrum of deep learning algorithms in drug discovery.
    Piroozmand F; Mohammadipanah F; Sajedi H
    Chem Biol Drug Des; 2020 Sep; 96(3):886-901. PubMed ID: 33058458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized models and deep learning methods for drug response prediction in cancer treatments: a review.
    Hajim WI; Zainudin S; Mohd Daud K; Alheeti K
    PeerJ Comput Sci; 2024; 10():e1903. PubMed ID: 38660174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines.
    Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies.
    She S; Chen H; Ji W; Sun M; Cheng J; Rui M; Feng C
    Front Pharmacol; 2022; 13():1032875. PubMed ID: 36588694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.
    Liu Q; Xie L
    PLoS Comput Biol; 2021 Feb; 17(2):e1008653. PubMed ID: 33577560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MMSyn: A New Multimodal Deep Learning Framework for Enhanced Prediction of Synergistic Drug Combinations.
    Pang Y; Chen Y; Lin M; Zhang Y; Zhang J; Wang L
    J Chem Inf Model; 2024 May; 64(9):3689-3705. PubMed ID: 38676916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction.
    Chen ML; Doddi A; Royer J; Freschi L; Schito M; Ezewudo M; Kohane IS; Beam A; Farhat M
    EBioMedicine; 2019 May; 43():356-369. PubMed ID: 31047860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.