These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31950157)

  • 1. Modulated control of DNA supercoiling balance by the DNA-wrapping domain of bacterial gyrase.
    Hobson MJ; Bryant Z; Berger JM
    Nucleic Acids Res; 2020 Feb; 48(4):2035-2049. PubMed ID: 31950157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA; Farhat M; Klostermeier D
    J Biol Chem; 2014 May; 289(18):12275-85. PubMed ID: 24563461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The "GyrA-box" is required for the ability of DNA gyrase to wrap DNA and catalyze the supercoiling reaction.
    Kramlinger VM; Hiasa H
    J Biol Chem; 2006 Feb; 281(6):3738-42. PubMed ID: 16332690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding and Hydrolysis of a Single ATP Is Sufficient for N-Gate Closure and DNA Supercoiling by Gyrase.
    Hartmann S; Gubaev A; Klostermeier D
    J Mol Biol; 2017 Nov; 429(23):3717-3729. PubMed ID: 29032205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome.
    Rovinskiy N; Agbleke AA; Chesnokova O; Pang Z; Higgins NP
    PLoS Genet; 2012; 8(8):e1002845. PubMed ID: 22916023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity.
    Tretter EM; Berger JM
    J Biol Chem; 2012 May; 287(22):18636-44. PubMed ID: 22457353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: II. The shape of the GyrA subunit C-terminal domain (CTD) is not a sole determinant for controlling supercoiling efficiency.
    Tretter EM; Berger JM
    J Biol Chem; 2012 May; 287(22):18645-54. PubMed ID: 22457352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The GyrA-box determines the geometry of DNA bound to gyrase and couples DNA binding to the nucleotide cycle.
    Lanz MA; Klostermeier D
    Nucleic Acids Res; 2012 Nov; 40(21):10893-903. PubMed ID: 22977179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E. coli Gyrase Fails to Negatively Supercoil Diaminopurine-Substituted DNA.
    Fernández-Sierra M; Shao Q; Fountain C; Finzi L; Dunlap D
    J Mol Biol; 2015 Jul; 427(13):2305-18. PubMed ID: 25902201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA.
    Basu A; Schoeffler AJ; Berger JM; Bryant Z
    Nat Struct Mol Biol; 2012 Apr; 19(5):538-46, S1. PubMed ID: 22484318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A superhelical spiral in the Escherichia coli DNA gyrase A C-terminal domain imparts unidirectional supercoiling bias.
    Ruthenburg AJ; Graybosch DM; Huetsch JC; Verdine GL
    J Biol Chem; 2005 Jul; 280(28):26177-84. PubMed ID: 15897198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gyrase containing a single C-terminal domain catalyzes negative supercoiling of DNA by decreasing the linking number in steps of two.
    Stelljes JT; Weidlich D; Gubaev A; Klostermeier D
    Nucleic Acids Res; 2018 Jul; 46(13):6773-6784. PubMed ID: 29893908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage.
    Gubaev A; Klostermeier D
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14085-90. PubMed ID: 21817063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance.
    Gross CH; Parsons JD; Grossman TH; Charifson PS; Bellon S; Jernee J; Dwyer M; Chambers SP; Markland W; Botfield M; Raybuck SA
    Antimicrob Agents Chemother; 2003 Mar; 47(3):1037-46. PubMed ID: 12604539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism.
    Gubaev A; Weidlich D; Klostermeier D
    Nucleic Acids Res; 2016 Dec; 44(21):10354-10366. PubMed ID: 27557712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs.
    Tretter EM; Lerman JC; Berger JM
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22055-9. PubMed ID: 21076033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring In Vivo Supercoil Dynamics and Transcription Elongation Rates in Bacterial Chromosomes.
    Patrick Higgins N
    Methods Mol Biol; 2017; 1624():17-27. PubMed ID: 28842872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interactions between gyrase subunits are optimized in a species-specific manner.
    Weidlich D; Klostermeier D
    J Biol Chem; 2020 Feb; 295(8):2299-2312. PubMed ID: 31953321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.