These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31950260)
1. Bifurcations of cycles in nonlinear semelparous Leslie matrix models. Kon R J Math Biol; 2020 Mar; 80(4):1187-1207. PubMed ID: 31950260 [TBL] [Abstract][Full Text] [Related]
2. The winner takes it all: how semelparous insects can become periodical. Diekmann O; Planqué R J Math Biol; 2020 Jan; 80(1-2):283-301. PubMed ID: 31030298 [TBL] [Abstract][Full Text] [Related]
3. Three stage semelparous Leslie models. Cushing JM J Math Biol; 2009 Jul; 59(1):75-104. PubMed ID: 18777023 [TBL] [Abstract][Full Text] [Related]
4. A Hybrid Model for the Population Dynamics of Periodical Cicadas. Machta J; Blackwood JC; Noble A; Liebhold AM; Hastings A Bull Math Biol; 2019 Apr; 81(4):1122-1142. PubMed ID: 30569326 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear semelparous leslie models. Cushing JM Math Biosci Eng; 2006 Jan; 3(1):17-36. PubMed ID: 20361805 [TBL] [Abstract][Full Text] [Related]
7. A nonlinear continuous-time model for a semelparous species. Veprauskas A Math Biosci; 2018 Mar; 297():1-11. PubMed ID: 29330074 [TBL] [Abstract][Full Text] [Related]
8. Permanence induced by life-cycle resonances: the periodical cicada problem. Kon R J Biol Dyn; 2012; 6():855-90. PubMed ID: 22873619 [TBL] [Abstract][Full Text] [Related]
9. Single-class orbits in nonlinear Leslie matrix models for semelparous populations. Kon R; Iwasa Y J Math Biol; 2007 Nov; 55(5-6):781-802. PubMed ID: 17639397 [TBL] [Abstract][Full Text] [Related]
10. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey. Kooi BW; Venturino E Math Biosci; 2016 Apr; 274():58-72. PubMed ID: 26874217 [TBL] [Abstract][Full Text] [Related]
11. Avian predation pressure as a potential driver of periodical cicada cycle length. Koenig WD; Liebhold AM Am Nat; 2013 Jan; 181(1):145-9. PubMed ID: 23234852 [TBL] [Abstract][Full Text] [Related]
12. Dynamic consequences of reproductive delay in Leslie matrix models with nonlinear survival probabilities. Wikan A Math Biosci; 1997 Nov; 146(1):37-62. PubMed ID: 9357293 [TBL] [Abstract][Full Text] [Related]
13. Discrete time darwinian dynamics and semelparity versus iteroparity. Cushing JM Math Biosci Eng; 2019 Mar; 16(4):1815-1835. PubMed ID: 31137187 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of a modified Leslie-Gower predation model considering a generalist predator and the hyperbolic functional response. González-Olivares E; Arancibia-Ibarra C; Rojas-Palma A; González-Yañez B Math Biosci Eng; 2019 Sep; 16(6):7995-8024. PubMed ID: 31698652 [TBL] [Abstract][Full Text] [Related]
15. Competition and Stragglers as Mediators of Developmental Synchrony in Periodical Cicadas. Blackwood JC; Machta J; Meyer AD; Noble AE; Hastings A; Liebhold AM Am Nat; 2018 Oct; 192(4):479-489. PubMed ID: 30205023 [TBL] [Abstract][Full Text] [Related]
18. Density-dependent vital rates and their population dynamic consequences. Neubert MG; Caswell HC J Math Biol; 2000 Aug; 41(2):103-21. PubMed ID: 11039693 [TBL] [Abstract][Full Text] [Related]
19. Stochastic Sensitivity Analysis of Noise-Induced Extinction in the Ricker Model with Delay and Allee Effect. Bashkirtseva I; Ryashko L Bull Math Biol; 2018 Jun; 80(6):1596-1614. PubMed ID: 29611109 [TBL] [Abstract][Full Text] [Related]
20. The diffusive Lotka-Volterra predator-prey system with delay. Al Noufaey KS; Marchant TR; Edwards MP Math Biosci; 2015 Dec; 270(Pt A):30-40. PubMed ID: 26471317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]