These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 31950445)
1. CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced L-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase. Dong J; Kan B; Liu H; Zhan M; Wang S; Xu G; Han R; Ni Y Appl Biochem Biotechnol; 2020 Jul; 191(3):955-967. PubMed ID: 31950445 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. Zhan M; Kan B; Dong J; Xu G; Han R; Ni Y J Ind Microbiol Biotechnol; 2019 Jan; 46(1):45-54. PubMed ID: 30446890 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Kim SY; Lee J; Lee SY Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446 [TBL] [Abstract][Full Text] [Related]
4. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Schneider J; Eberhardt D; Wendisch VF Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950 [TBL] [Abstract][Full Text] [Related]
5. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production. Zhang B; Yu M; Zhou Y; Li Y; Ye BC Microb Cell Fact; 2017 Sep; 16(1):158. PubMed ID: 28938890 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. Jiang LY; Zhang YY; Li Z; Liu JZ J Ind Microbiol Biotechnol; 2013 Oct; 40(10):1143-51. PubMed ID: 23836141 [TBL] [Abstract][Full Text] [Related]
7. Zhang J; Qian F; Dong F; Wang Q; Yang J; Jiang Y; Yang S ACS Synth Biol; 2020 Jul; 9(7):1897-1906. PubMed ID: 32627539 [TBL] [Abstract][Full Text] [Related]
8. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping. Xu JZ; Ruan HZ; Chen XL; Zhang F; Zhang W Microb Cell Fact; 2019 Apr; 18(1):65. PubMed ID: 30943966 [TBL] [Abstract][Full Text] [Related]
9. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. Jiang LY; Chen SG; Zhang YY; Liu JZ BMC Biotechnol; 2013 Jun; 13():47. PubMed ID: 23725060 [TBL] [Abstract][Full Text] [Related]
10. Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase. Hao N; Mu J; Hu N; Xu S; Yan M; Li Y; Guo K; Xu L J Ind Microbiol Biotechnol; 2015 Feb; 42(2):307-13. PubMed ID: 25492493 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of l-Sorbose and l-Psicose Based on C-C Bond Formation Catalyzed by Aldolases in an Engineered Corynebacterium glutamicum Strain. Yang J; Li J; Men Y; Zhu Y; Zhang Y; Sun Y; Ma Y Appl Environ Microbiol; 2015 Jul; 81(13):4284-94. PubMed ID: 25888171 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose. Zhang B; Gao G; Chu XH; Ye BC Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382 [TBL] [Abstract][Full Text] [Related]
14. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Takeno S; Hori K; Ohtani S; Mimura A; Mitsuhashi S; Ikeda M Metab Eng; 2016 Sep; 37():1-10. PubMed ID: 27044449 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Komati Reddy G; Lindner SN; Wendisch VF Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602 [TBL] [Abstract][Full Text] [Related]
16. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. Schneider J; Niermann K; Wendisch VF J Biotechnol; 2011 Jul; 154(2-3):191-8. PubMed ID: 20638422 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Li Y; Cong H; Liu B; Song J; Sun X; Zhang J; Yang Q Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1185-97. PubMed ID: 27255137 [TBL] [Abstract][Full Text] [Related]
19. Proteome analysis guided genetic engineering of Corynebacterium glutamicum S9114 for tween 40-triggered improvement in L-ornithine production. Jiang Y; Huang MZ; Chen XL; Zhang B Microb Cell Fact; 2020 Jan; 19(1):2. PubMed ID: 31906967 [TBL] [Abstract][Full Text] [Related]
20. Enhanced l-ornithine production by systematic manipulation of l-ornithine metabolism in engineered Corynebacterium glutamicum S9114. Zhang B; Ren LQ; Yu M; Zhou Y; Ye BC Bioresour Technol; 2018 Feb; 250():60-68. PubMed ID: 29153651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]