These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 31950503)
1. Divergent metabolic responses dictate vulnerability to NAMPT inhibition in ovarian cancer. Kudo K; Nomura M; Sakamoto Y; Ito S; Morita M; Kawai M; Yamashita Y; Ito K; Yamada H; Shima H; Yaegashi N; Tanuma N FEBS Lett; 2020 May; 594(9):1379-1388. PubMed ID: 31950503 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer. Ju HQ; Zhuang ZN; Li H; Tian T; Lu YX; Fan XQ; Zhou HJ; Mo HY; Sheng H; Chiao PJ; Xu RH Cancer Lett; 2016 Aug; 379(1):1-11. PubMed ID: 27233476 [TBL] [Abstract][Full Text] [Related]
3. Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Chini CC; Guerrico AM; Nin V; Camacho-Pereira J; Escande C; Barbosa MT; Chini EN Clin Cancer Res; 2014 Jan; 20(1):120-30. PubMed ID: 24025713 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT), an Enzyme Essential for NAD+ Biosynthesis, Leads to Altered Carbohydrate Metabolism in Cancer Cells. Tan B; Dong S; Shepard RL; Kays L; Roth KD; Geeganage S; Kuo MS; Zhao G J Biol Chem; 2015 Jun; 290(25):15812-15824. PubMed ID: 25944913 [TBL] [Abstract][Full Text] [Related]
5. Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. Tan B; Young DA; Lu ZH; Wang T; Meier TI; Shepard RL; Roth K; Zhai Y; Huss K; Kuo MS; Gillig J; Parthasarathy S; Burkholder TP; Smith MC; Geeganage S; Zhao G J Biol Chem; 2013 Feb; 288(5):3500-11. PubMed ID: 23239881 [TBL] [Abstract][Full Text] [Related]
6. NAMPT Inhibition Suppresses Cancer Stem-like Cells Associated with Therapy-Induced Senescence in Ovarian Cancer. Nacarelli T; Fukumoto T; Zundell JA; Fatkhutdinov N; Jean S; Cadungog MG; Borowsky ME; Zhang R Cancer Res; 2020 Feb; 80(4):890-900. PubMed ID: 31857293 [TBL] [Abstract][Full Text] [Related]
7. EWS-FLI1 confers exquisite sensitivity to NAMPT inhibition in Ewing sarcoma cells. Mutz CN; Schwentner R; Aryee DNT; Bouchard EDJ; Mejia EM; Hatch GM; Kauer MO; Katschnig AM; Ban J; Garten A; Alonso J; Banerji V; Kovar H Oncotarget; 2017 Apr; 8(15):24679-24693. PubMed ID: 28160567 [TBL] [Abstract][Full Text] [Related]
8. Targeting the NAD Ye C; Qi L; Li X; Wang J; Yu J; Zhou B; Guo C; Chen J; Zheng S Cell Commun Signal; 2020 Jan; 18(1):16. PubMed ID: 32005247 [TBL] [Abstract][Full Text] [Related]
9. Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model. Sociali G; Raffaghello L; Magnone M; Zamporlini F; Emionite L; Sturla L; Bianchi G; Vigliarolo T; Nahimana A; Nencioni A; Raffaelli N; Bruzzone S Oncotarget; 2016 Jan; 7(3):2968-84. PubMed ID: 26658104 [TBL] [Abstract][Full Text] [Related]
10. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells. Schuster S; Penke M; Gorski T; Gebhardt R; Weiss TS; Kiess W; Garten A Biochem Biophys Res Commun; 2015 Mar; 458(2):334-40. PubMed ID: 25656579 [TBL] [Abstract][Full Text] [Related]
11. Dual-inhibition of NAMPT and PAK4 induces anti-tumor effects in 3D-spheroids model of platinum-resistant ovarian cancer. Kudo K; Greer YE; Yoshida T; Harrington BS; Korrapati S; Shibuya Y; Henegar L; Kopp JB; Fujii T; Lipkowitz S; Annunziata CM Cancer Gene Ther; 2024 May; 31(5):721-735. PubMed ID: 38424218 [TBL] [Abstract][Full Text] [Related]
12. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Cea M; Cagnetta A; Fulciniti M; Tai YT; Hideshima T; Chauhan D; Roccaro A; Sacco A; Calimeri T; Cottini F; Jakubikova J; Kong SY; Patrone F; Nencioni A; Gobbi M; Richardson P; Munshi N; Anderson KC Blood; 2012 Oct; 120(17):3519-29. PubMed ID: 22955917 [TBL] [Abstract][Full Text] [Related]
14. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone. Moore Z; Chakrabarti G; Luo X; Ali A; Hu Z; Fattah FJ; Vemireddy R; DeBerardinis RJ; Brekken RA; Boothman DA Cell Death Dis; 2015 Jan; 6(1):e1599. PubMed ID: 25590809 [TBL] [Abstract][Full Text] [Related]
15. NAMPT suppresses glucose deprivation-induced oxidative stress by increasing NADPH levels in breast cancer. Hong SM; Park CW; Kim SW; Nam YJ; Yu JH; Shin JH; Yun CH; Im SH; Kim KT; Sung YC; Choi KY Oncogene; 2016 Jul; 35(27):3544-54. PubMed ID: 26568303 [TBL] [Abstract][Full Text] [Related]
16. Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells. Bajrami I; Kigozi A; Van Weverwijk A; Brough R; Frankum J; Lord CJ; Ashworth A EMBO Mol Med; 2012 Oct; 4(10):1087-96. PubMed ID: 22933245 [TBL] [Abstract][Full Text] [Related]
17. Targeting NAD Metabolism: Rational Design, Synthesis and In Vitro Evaluation of NAMPT/PARP1 Dual-Target Inhibitors as Anti-Breast Cancer Agents. Li Y; Kong X; Chu X; Fu H; Feng X; Zhao C; Deng Y; Ge J Molecules; 2024 Jun; 29(12):. PubMed ID: 38930900 [TBL] [Abstract][Full Text] [Related]
18. Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase. Olesen UH; Petersen JG; Garten A; Kiess W; Yoshino J; Imai S; Christensen MK; Fristrup P; Thougaard AV; Björkling F; Jensen PB; Nielsen SJ; Sehested M BMC Cancer; 2010 Dec; 10():677. PubMed ID: 21144000 [TBL] [Abstract][Full Text] [Related]
19. NAMPT inhibitor and metabolite protect mouse brain from cryoinjury through distinct mechanisms. Zhang XQ; Lu JT; Jiang WX; Lu YB; Wu M; Wei EQ; Zhang WP; Tang C Neuroscience; 2015 Apr; 291():230-40. PubMed ID: 25684751 [TBL] [Abstract][Full Text] [Related]
20. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. Grozio A; Sociali G; Sturla L; Caffa I; Soncini D; Salis A; Raffaelli N; De Flora A; Nencioni A; Bruzzone S J Biol Chem; 2013 Sep; 288(36):25938-25949. PubMed ID: 23880765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]