These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31950758)
1. Preparation of Hierarchically Assembled Silver Nanostructures based on the Morphologies of Crystalline Peptide-Silver(I) Complexes. Miyake R; Nitanai Y; Nakagawa Y; Xing J; Harano K; Nakamura E; Okabayashi J; Minamikawa T; Uruma K; Kanaizuka K; Kurihara M Chempluschem; 2019 Mar; 84(3):295-301. PubMed ID: 31950758 [TBL] [Abstract][Full Text] [Related]
2. Preparation of silver-coated cotton fabrics using silver carbamate via thermal reduction and their properties. Kwak WG; Oh MH; Gong MS Carbohydr Polym; 2015 Jan; 115():317-24. PubMed ID: 25439900 [TBL] [Abstract][Full Text] [Related]
3. "Dual-template" synthesis of one-dimensional conductive nanoparticle superstructures from coordination metal-peptide polymer crystals. Rubio-Martínez M; Puigmartí-Luis J; Imaz I; Dittrich PS; Maspoch D Small; 2013 Dec; 9(24):4160-7. PubMed ID: 23828757 [TBL] [Abstract][Full Text] [Related]
4. Self-Assembled Peptide Nanofibers Encapsulated with Superfine Silver Nanoparticles via Ag⁺ Coordination. Hu Y; Xu W; Li G; Xu L; Song A; Hao J Langmuir; 2015 Aug; 31(31):8599-605. PubMed ID: 26177269 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. Lukman AI; Gong B; Marjo CE; Roessner U; Harris AT J Colloid Interface Sci; 2011 Jan; 353(2):433-44. PubMed ID: 20974473 [TBL] [Abstract][Full Text] [Related]
6. Microstructural, spectroscopic, and antibacterial properties of silver-based hybrid nanostructures biosynthesized using extracts of coriander leaves and seeds. Luna C; Barriga-Castro ED; Gómez-Treviño A; Núñez NO; Mendoza-Reséndez R Int J Nanomedicine; 2016; 11():4787-4798. PubMed ID: 27703347 [TBL] [Abstract][Full Text] [Related]
7. Responsive helical self-assembly of AgNO3 and melamine through asymmetric coordination for Ag nanochain synthesis. Fei J; Gao L; Zhao J; Du C; Li J Small; 2013 Apr; 9(7):1021-4. PubMed ID: 23148050 [TBL] [Abstract][Full Text] [Related]
8. In situ synthesis of Ag nanoparticles in aminocalix[4]arene multilayers. Gao S; Yuan D; Lü J; Cao R J Colloid Interface Sci; 2010 Jan; 341(2):320-5. PubMed ID: 19854446 [TBL] [Abstract][Full Text] [Related]
9. Short-peptide-based hydrogel: a template for the in situ synthesis of fluorescent silver nanoclusters by using sunlight. Adhikari B; Banerjee A Chemistry; 2010 Dec; 16(46):13698-705. PubMed ID: 20945315 [TBL] [Abstract][Full Text] [Related]
10. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature. Wang RC; Gao YS; Chen SJ Nanotechnology; 2009 Sep; 20(37):375605. PubMed ID: 19706939 [TBL] [Abstract][Full Text] [Related]
11. In vitro antimicrobial and anticancer properties of TiO Bonan RF; Mota MF; da Costa Farias RM; da Silva SD; Bonan PRF; Diesel L; Menezes RR; da Cruz Perez DE Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109876. PubMed ID: 31500007 [TBL] [Abstract][Full Text] [Related]
12. Growth of different morphologies (quantum dots to nanorod) of Ag-nanoparticles: role of cysteine concentrations. Khan Z; Talib A Colloids Surf B Biointerfaces; 2010 Mar; 76(1):164-9. PubMed ID: 19954933 [TBL] [Abstract][Full Text] [Related]
13. Green synthesis of Ag nanoflowers using Kalanchoe Daigremontiana extract for enhanced photocatalytic and antibacterial activities. Molina GA; Esparza R; López-Miranda JL; Hernández-Martínez AR; España-Sánchez BL; Elizalde-Peña EA; Estevez M Colloids Surf B Biointerfaces; 2019 Aug; 180():141-149. PubMed ID: 31039515 [TBL] [Abstract][Full Text] [Related]
14. Circular dichroism and UV-Vis absorption spectroscopic monitoring of production of chiral silver nanoparticles templated by guanosine 5'-monophosphate. Pandoli O; Massi A; Cavazzini A; Spada GP; Cui D Analyst; 2011 Sep; 136(18):3713-9. PubMed ID: 21796288 [TBL] [Abstract][Full Text] [Related]
15. Enrichment of anodic MgO layers with Ag nanoparticles for biomedical applications. Necula BS; Fratila-Apachitei LE; Berkani A; Apachitei I; Duszczyk J J Mater Sci Mater Med; 2009 Jan; 20(1):339-45. PubMed ID: 18807261 [TBL] [Abstract][Full Text] [Related]
16. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. de Moraes AC; Lima BA; de Faria AF; Brocchi M; Alves OL Int J Nanomedicine; 2015; 10():6847-61. PubMed ID: 26586946 [TBL] [Abstract][Full Text] [Related]
17. Decoration of Au and Ag nanoparticles on self-assembling pseudopeptide-based nanofiber by using a short peptide as capping agent for metal nanoparticles. Bose PP; Drew MG; Banerjee A Org Lett; 2007 Jun; 9(13):2489-92. PubMed ID: 17542598 [TBL] [Abstract][Full Text] [Related]
18. Silver nanoplates and nanowires by a simple chemical reduction method. Khan Z; Hussain JI; Kumar S; Hashmi AA Colloids Surf B Biointerfaces; 2011 Aug; 86(1):87-92. PubMed ID: 21493047 [TBL] [Abstract][Full Text] [Related]
19. Formation of Silver Nanoparticles by Electron Transfer in Peptides and c-Cytochromes. Vasylevskyi SI; Kracht S; Corcosa P; Fromm KM; Giese B; Füeg M Angew Chem Int Ed Engl; 2017 May; 56(21):5926-5930. PubMed ID: 28429471 [TBL] [Abstract][Full Text] [Related]
20. Electron transfer in peptides: on the formation of silver nanoparticles. Kracht S; Messerer M; Lang M; Eckhardt S; Lauz M; Grobéty B; Fromm KM; Giese B Angew Chem Int Ed Engl; 2015 Mar; 54(10):2912-6. PubMed ID: 25663127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]