These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 31950761)
1. Nanoparticle Ripening : A Versatile Approach for the Size and Shape Control of Metallic Iron Nanoparticles. Lacroix LM; Meffre A; Gatel C; Fazzini PF; Lachaize S; Respaud M; Chaudret B Chempluschem; 2019 Mar; 84(3):302-306. PubMed ID: 31950761 [TBL] [Abstract][Full Text] [Related]
2. Iron nanoparticle growth in organic superstructures. Lacroix LM; Lachaize S; Falqui A; Respaud M; Chaudret B J Am Chem Soc; 2009 Jan; 131(2):549-57. PubMed ID: 19140793 [TBL] [Abstract][Full Text] [Related]
3. Nanoparticles by decomposition of long chain iron carboxylates: from spheres to stars and cubes. Bronstein LM; Atkinson JE; Malyutin AG; Kidwai F; Stein BD; Morgan DG; Perry JM; Karty JA Langmuir; 2011 Mar; 27(6):3044-50. PubMed ID: 21294561 [TBL] [Abstract][Full Text] [Related]
4. An efficient and highly versatile synthetic route to prepare iron oxide nanoparticles/nanocomposites with tunable morphologies. Karagoz B; Yeow J; Esser L; Prakash SM; Kuchel RP; Davis TP; Boyer C Langmuir; 2014 Sep; 30(34):10493-502. PubMed ID: 25137176 [TBL] [Abstract][Full Text] [Related]
5. Growth mechanisms and size control of FePt nanoparticles synthesized using Fe(CO)x (x < 5)-oleylamine and platinum(ii) acetylacetonate. Bian B; Xia W; Du J; Zhang J; Liu JP; Guo Z; Yan A Nanoscale; 2013 Mar; 5(6):2454-9. PubMed ID: 23403464 [TBL] [Abstract][Full Text] [Related]
6. Size-tunable synthesis of iron oxide nanocrystals by continuous seed-mediated growth: role of alkylamine species in the stepwise thermal decomposition of iron(II) oxalate. Nozawa R; Naka T; Kurihara M; Togashi T Dalton Trans; 2021 Nov; 50(44):16021-16029. PubMed ID: 34613325 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. Radini IA; Hasan N; Malik MA; Khan Z J Photochem Photobiol B; 2018 Jun; 183():154-163. PubMed ID: 29705508 [TBL] [Abstract][Full Text] [Related]
8. Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Perez De Berti IO; Cagnoli MV; Pecchi G; Alessandrini JL; Stewart SJ; Bengoa JF; Marchetti SG Nanotechnology; 2013 May; 24(17):175601. PubMed ID: 23548801 [TBL] [Abstract][Full Text] [Related]
9. Enhanced dechlorination of m-DCB using iron@graphite/palladium (Fe@C/Pd) nanoparticles produced by pulsed laser ablation in liquid. Yu Y; Jung HJ; Je M; Choi HC; Choi MY Chemosphere; 2016 Jul; 155():250-256. PubMed ID: 27129061 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation. Xing L; Ten Brink GH; Chen B; Schmidt FP; Haberfehlner G; Hofer F; Kooi BJ; Palasantzas G Nanotechnology; 2016 May; 27(21):215703. PubMed ID: 27089553 [TBL] [Abstract][Full Text] [Related]
11. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Hu J; Guo H; Li J; Gan Q; Wang Y; Xing B Environ Pollut; 2017 Feb; 221():199-208. PubMed ID: 27916492 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of Fe3O4 nanoparticles with tunable and uniform size through simple thermal decomposition. Wang D; Ma Q; Yang P J Nanosci Nanotechnol; 2012 Aug; 12(8):6432-8. PubMed ID: 22962760 [TBL] [Abstract][Full Text] [Related]
14. The internal structure of magnetic nanoparticles determines the magnetic response. Pacakova B; Kubickova S; Salas G; Mantlikova AR; Marciello M; Morales MP; Niznansky D; Vejpravova J Nanoscale; 2017 Apr; 9(16):5129-5140. PubMed ID: 28387395 [TBL] [Abstract][Full Text] [Related]
15. Characterization of iron nanoparticles/reduced graphene oxide composites synthesized by one step eucalyptus leaf extract. Wang K; Liu Y; Jin X; Chen Z Environ Pollut; 2019 Jul; 250():8-13. PubMed ID: 30981939 [TBL] [Abstract][Full Text] [Related]
16. Tailoring the shapes of Fe(x)Pt(100-x) nanoparticles. Shukla N; Nigra MM; Nuhfer T; Bartel MA; Gellman AJ Nanotechnology; 2009 Feb; 20(6):065602. PubMed ID: 19417390 [TBL] [Abstract][Full Text] [Related]
17. Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres. Lin J; Weng X; Dharmarajan R; Chen Z Chemosphere; 2017 Feb; 169():413-417. PubMed ID: 27894052 [TBL] [Abstract][Full Text] [Related]
18. Assessing the toxicity and the dissolution rate of zinc oxide nanoparticles using a dual-color Escherichia coli whole-cell bioreporter. Kim S; Chae Y; Kang Y; An YJ; Yoon Y Chemosphere; 2016 Nov; 163():429-437. PubMed ID: 27565310 [TBL] [Abstract][Full Text] [Related]
19. Controlled synthesis of Au-Fe heterodimer nanoparticles and their conversion into Au-Fe Jiang G; Huang Y; Zhang S; Zhu H; Wu Z; Sun S Nanoscale; 2016 Oct; 8(41):17947-17952. PubMed ID: 27731449 [TBL] [Abstract][Full Text] [Related]
20. Key Roles of Size and Crystallinity of Nanosized Iron Hydr(oxides) Stabilized by Humic Substances in Iron Bioavailability to Plants. Kulikova NA; Polyakov AY; Lebedev VA; Abroskin DP; Volkov DS; Pankratov DA; Klein OI; Senik SV; Sorkina TA; Garshev AV; Veligzhanin AA; Garcia Mina JM; Perminova IV J Agric Food Chem; 2017 Dec; 65(51):11157-11169. PubMed ID: 29206449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]