BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31951099)

  • 41. Construction and operation of high-resolution magnetic tape head tweezers for measuring single-protein dynamics under force.
    Tapia-Rojo R
    Methods Enzymol; 2024; 694():83-107. PubMed ID: 38492959
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.
    Milan JL; Manifacier I; Beussman KM; Han SJ; Sniadecki NJ; About I; Chabrand P
    J Biomech; 2016 Sep; 49(13):2625-2634. PubMed ID: 27298154
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of Green's function for three-dimensional traction force reconstruction based on geometry and boundary conditions of cell culture matrices.
    Du Y; Herath SCB; Wang QG; Asada H; Chen PCY
    Acta Biomater; 2018 Feb; 67():215-228. PubMed ID: 29242157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rho/ROCK mechanosensor in adipocyte stiffness and traction force generation.
    Bouzid T; Esfahani AM; Safa BT; Kim E; Saraswathi V; Kim JK; Yang R; Lim JY
    Biochem Biophys Res Commun; 2022 May; 606():42-48. PubMed ID: 35339750
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnetic microposts as an approach to apply forces to living cells.
    Sniadecki NJ; Anguelouch A; Yang MT; Lamb CM; Liu Z; Kirschner SB; Liu Y; Reich DH; Chen CS
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14553-8. PubMed ID: 17804810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanical control of tissue shape: Cell-extrinsic and -intrinsic mechanisms join forces to regulate morphogenesis.
    Vignes H; Vagena-Pantoula C; Vermot J
    Semin Cell Dev Biol; 2022 Oct; 130():45-55. PubMed ID: 35367121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigating piconewton forces in cells by FRET-based molecular force microscopy.
    Freikamp A; Mehlich A; Klingner C; Grashoff C
    J Struct Biol; 2017 Jan; 197(1):37-42. PubMed ID: 26980477
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Micropipette force probe to quantify single-cell force generation: application to T-cell activation.
    Sawicka A; Babataheri A; Dogniaux S; Barakat AI; Gonzalez-Rodriguez D; Hivroz C; Husson J
    Mol Biol Cell; 2017 Nov; 28(23):3229-3239. PubMed ID: 28931600
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions.
    Ting LH; Jahn JR; Jung JI; Shuman BR; Feghhi S; Han SJ; Rodriguez ML; Sniadecki NJ
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(11):H2220-9. PubMed ID: 22447948
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measuring cellular traction forces on non-planar substrates.
    Soiné JR; Hersch N; Dreissen G; Hampe N; Hoffmann B; Merkel R; Schwarz US
    Interface Focus; 2016 Oct; 6(5):20160024. PubMed ID: 27708757
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Super-resolution traction force microscopy with enhanced tracer density enables capturing molecular scale traction.
    Xu Y; Guo C; Yang X; Yuan W; Zhang X; Sun Y; Wen G; Wang L; Li H; Xiong C; Yang C
    Biomater Sci; 2023 Jan; 11(3):1056-1065. PubMed ID: 36562450
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics.
    Al-Rekabi Z; Pelling AE
    Phys Biol; 2013 Dec; 10(6):066003. PubMed ID: 24164970
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inverse tissue mechanics of cell monolayer expansion.
    Kondo Y; Aoki K; Ishii S
    PLoS Comput Biol; 2018 Mar; 14(3):e1006029. PubMed ID: 29494578
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Holographic Traction Force Microscopy.
    Makarchuk S; Beyer N; Gaiddon C; Grange W; Hébraud P
    Sci Rep; 2018 Feb; 8(1):3038. PubMed ID: 29445207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy.
    Mulligan JA; Feng X; Adie SG
    Sci Rep; 2019 Mar; 9(1):4086. PubMed ID: 30858424
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping the 3D orientation of piconewton integrin traction forces.
    Brockman JM; Blanchard AT; Pui-Yan V; Derricotte WD; Zhang Y; Fay ME; Lam WA; Evangelista FA; Mattheyses AL; Salaita K
    Nat Methods; 2018 Feb; 15(2):115-118. PubMed ID: 29256495
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A hybrid model of intercellular tension and cell-matrix mechanical interactions in a multicellular geometry.
    Scott LE; Griggs LA; Narayanan V; Conway DE; Lemmon CA; Weinberg SH
    Biomech Model Mechanobiol; 2020 Dec; 19(6):1997-2013. PubMed ID: 32193709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A structural bio-chemo-mechanical model for vascular smooth muscle cell traction force microscopy.
    Flanary SM; Barocas VH
    Biomech Model Mechanobiol; 2023 Aug; 22(4):1221-1238. PubMed ID: 37004657
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved-throughput traction microscopy based on fluorescence micropattern for manual microscopy.
    Liu K; Yuan Y; Huang J; Wei Q; Pang M; Xiong C; Fang J
    PLoS One; 2013; 8(8):e70122. PubMed ID: 23936383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels.
    Tseng Q; Wang I; Duchemin-Pelletier E; Azioune A; Carpi N; Gao J; Filhol O; Piel M; Théry M; Balland M
    Lab Chip; 2011 Jul; 11(13):2231-40. PubMed ID: 21523273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.