These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31951243)

  • 1. Surface conduction and electroosmotic flow around charged dielectric pillar arrays in microchannels.
    Huh K; Yang SY; Park JS; Lee JA; Lee H; Kim SJ
    Lab Chip; 2020 Feb; 20(3):675-686. PubMed ID: 31951243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels.
    Nam S; Cho I; Heo J; Lim G; Bazant MZ; Moon DJ; Sung GY; Kim SJ
    Phys Rev Lett; 2015 Mar; 114(11):114501. PubMed ID: 25839275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems.
    Liapis AI; Grimes BA
    J Chromatogr A; 2000 Apr; 877(1-2):181-215. PubMed ID: 10845799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Impact of Surface Conduction and Electroosmotic Flow on Ion Transport Enhancement by Microscale Auxiliary Structures.
    Park JS; Cho I; Park J; Kim SJ
    Langmuir; 2024 May; 40(19):10098-10106. PubMed ID: 38696820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overlimiting Current in Nonuniform Arrays of Microchannels: Recirculating Flow and Anticrystallization.
    Lee H; Sohn S; Alizadeh S; Kwon S; Kim TJ; Park SM; Soh HT; Mani A; Kim SJ
    Nano Lett; 2021 Jun; 21(12):5438-5446. PubMed ID: 33784095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion Concentration Polarization by Bifurcated Current Path.
    Kim J; Cho I; Lee H; Kim SJ
    Sci Rep; 2017 Jul; 7(1):5091. PubMed ID: 28698651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternating electric field-induced ion current rectification and electroosmotic pump in ultranarrow charged carbon nanocones.
    Li W; Wang W; Hou Q; Yan Y; Dai C; Zhang J
    Phys Chem Chem Phys; 2018 Nov; 20(44):27910-27916. PubMed ID: 30379156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels.
    Li J; Peng R; Li D
    Anal Chim Acta; 2019 Jun; 1059():68-79. PubMed ID: 30876634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.
    Wu X; Ramiah Rajasekaran P; Martin CR
    ACS Nano; 2016 Apr; 10(4):4637-43. PubMed ID: 27046145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroosmotic Flow Hysteresis for Dissimilar Anionic Solutions.
    Lim AE; Lim CY; Lam YC
    Anal Chem; 2016 Aug; 88(16):8064-73. PubMed ID: 27426052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane.
    Dhopeshwarkar R; Crooks RM; Hlushkou D; Tallarek U
    Anal Chem; 2008 Feb; 80(4):1039-48. PubMed ID: 18197694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Conduction in a Microchannel.
    Sohn S; Cho I; Kwon S; Lee H; Kim SJ
    Langmuir; 2018 Jul; 34(26):7916-7921. PubMed ID: 29883128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel.
    Lim AE; Lim CY; Lam YC; Taboryski R; Wang SR
    Nanotechnology; 2017 Jun; 28(25):255303. PubMed ID: 28510536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced-charge electroosmotic flow around dielectric particles in uniform electric field.
    Zhang F; Li D
    J Colloid Interface Sci; 2013 Nov; 410():102-10. PubMed ID: 24034219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic biomolecule preconcentration using xurography-based micro-nano-micro fluidic devices.
    Yuan X; Renaud L; Audry MC; Kleimann P
    Anal Chem; 2015 Sep; 87(17):8695-701. PubMed ID: 26211837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Investigation of Nanostructure Orientation on Electroosmotic Flow.
    Lim AE; Lam YC
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33138301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced electrokinetic transport in micro-nanofluidic interconnect devices.
    Jin X; Joseph S; Gatimu EN; Bohn PW; Aluru NR
    Langmuir; 2007 Dec; 23(26):13209-22. PubMed ID: 17999544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic ion transport in nanofluidics and membranes with applications in bioanalysis and beyond.
    Cheng LJ
    Biomicrofluidics; 2018 Mar; 12(2):021502. PubMed ID: 29713395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of electroosmotic flows in electron-conducting microchannels by coupled quasi-reversible faradaic and adsorption-mediated depolarization.
    Qian S; Duval JF
    J Colloid Interface Sci; 2006 Aug; 300(1):413-28. PubMed ID: 16725151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.