BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31951297)

  • 1. Large Area Self-Assembled Ultrathin Polyimine Nanofilms Formed at the Liquid-Liquid Interface Used for Molecular Separation.
    Tiwari K; Sarkar P; Modak S; Singh H; Pramanik SK; Karan S; Das A
    Adv Mater; 2020 Feb; 32(8):e1905621. PubMed ID: 31951297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial synthesis of large-area ultrathin polyimine nanofilms as molecular separation membrane.
    Tiwari K; Modak S; Sarkar P; Ray S; Adupa V; Reddy KA; Pramanik SK; Das A; Karan S
    iScience; 2022 Apr; 25(4):104027. PubMed ID: 35313692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perm-selective ultrathin high flux microporous polyaryl nanofilm for molecular separation.
    Kaushik A; Dhundhiyawala M; Dobariya P; Marvaniya K; Kushwaha S; Patel K
    iScience; 2022 Jun; 25(6):104441. PubMed ID: 35677642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Transport through Ultrathin Polyamide Nanofilms Used for Reverse Osmosis.
    Jiang Z; Karan S; Livingston AG
    Adv Mater; 2018 Apr; 30(15):e1705973. PubMed ID: 29484724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformationally tunable calix[4]pyrrole-based nanofilms for efficient molecular separation.
    Liu X; Tang J; Yang J; Zhang H; Fang Y
    J Colloid Interface Sci; 2022 Mar; 610():368-375. PubMed ID: 34923274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling Covalent Organic Framework Nanofilms for Molecular Separation: Perforated Polymer-Assisted Transfer.
    Xiao A; Zhang Z; Shi X; Wang Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44783-44791. PubMed ID: 31689069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer nanofilms with enhanced microporosity by interfacial polymerization.
    Jimenez-Solomon MF; Song Q; Jelfs KE; Munoz-Ibanez M; Livingston AG
    Nat Mater; 2016 Jul; 15(7):760-7. PubMed ID: 27135857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust and Large-Area Calix[4]pyrrole-Based Nanofilms Enabled by Air/DMSO Interfacial Self-Assembly-Confined Synthesis.
    Yang J; Liu X; Tang J; Dėdinaitė A; Liu J; Miao R; Liu K; Peng J; Claesson PM; Liu X; Fang Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3336-3348. PubMed ID: 33356087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEMBRANE FILTRATION. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation.
    Karan S; Jiang Z; Livingston AG
    Science; 2015 Jun; 348(6241):1347-51. PubMed ID: 26089512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin Film Composite Membranes Fabricated by Novel In Situ Free Interfacial Polymerization for Desalination.
    Jiang C; Zhang L; Li P; Sun H; Hou Y; Niu QJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25304-25315. PubMed ID: 32369334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,2'-Biphenol-based Ultrathin Microporous Nanofilms for Highly Efficient Molecular Sieving Separation.
    Li SL; Chang G; Huang Y; Kinooka K; Chen Y; Fu W; Gong G; Yoshioka T; McKeown NB; Hu Y
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202212816. PubMed ID: 36148532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin metal-organic framework nanosheets as building blocks of lamellar nanofilms for ultrafast molecular sieving.
    Wang G; Lu J; Fang C; Fang W; Peng X; Zeng H; Zhu L
    Nanoscale; 2022 Dec; 14(47):17670-17680. PubMed ID: 36416307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation.
    Ying Y; Ying W; Guo Y; Peng X
    Nanotechnology; 2018 Apr; 29(15):155602. PubMed ID: 29406311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydopamine-Assisted Two-Dimensional Molybdenum Disulfide (MoS
    Tian H; Wu X; Zhang K
    Membranes (Basel); 2021 Jan; 11(2):. PubMed ID: 33573126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging Janus Substrates as a Confined "Interfacial Reactor" to Synthesize Ultrapermeable Polyamide Nanofilms.
    Zhu CY; Li HN; Guo BB; Fang Y; Liu C; Yang HC; Zhang C; Liang HQ; Xu ZK
    Research (Wash D C); 2024; 7():0359. PubMed ID: 38694199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Polyamide Nanofilms with Controlled Microporosity for Enhanced Solvent Permeation.
    Guo H; Li F; Shui X; Wang J; Fang C; Zhu L
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):37077-37085. PubMed ID: 37479673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Ordered Nanochannels in a Nanosheet-Directed Thin Zeolite Nanofilm for Precise and Fast CO
    Wang B; Wu T; Yu M; Li S; Zhou R; Xing W
    Small; 2020 Oct; 16(41):e2002836. PubMed ID: 32964691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving.
    Liu SH; Zhou JH; Wu C; Zhang P; Cao X; Sun JK
    Nat Commun; 2024 Mar; 15(1):2478. PubMed ID: 38509092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Chemical Separation by Freestanding CNT-Polyamide/Imide Nanofilm Synthesized at the Vapor-Liquid Interface.
    Droudian A; Youn SK; Wehner LA; Wyss RM; Li M; Park HG
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19305-19310. PubMed ID: 29808667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenanthroline-Based Polyarylate Porous Membranes with Rapid Water Transport for Metal Cation Separation.
    Ren D; Jin YT; Liu TY; Wang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7605-7616. PubMed ID: 31968159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.