These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31951372)
1. Size-Switchable Nanoparticles with Self-Destructive and Tumor Penetration Characteristics for Site-Specific Phototherapy of Cancer. Wang K; Tu Y; Yao W; Zong Q; Xiao X; Yang RM; Jiang XQ; Yuan Y ACS Appl Mater Interfaces; 2020 Feb; 12(6):6933-6943. PubMed ID: 31951372 [TBL] [Abstract][Full Text] [Related]
3. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. Sun S; Chen J; Jiang K; Tang Z; Wang Y; Li Z; Liu C; Wu A; Lin H ACS Appl Mater Interfaces; 2019 Feb; 11(6):5791-5803. PubMed ID: 30648846 [TBL] [Abstract][Full Text] [Related]
4. Photodynamic and photothermal tumor therapy using phase-change material nanoparticles containing chlorin e6 and nanodiamonds. Ryu TK; Baek SW; Kang RH; Jeong KY; Jun DR; Choi SW J Control Release; 2018 Jan; 270():237-245. PubMed ID: 29247665 [TBL] [Abstract][Full Text] [Related]
5. Rational Design of IR820- and Ce6-Based Versatile Micelle for Single NIR Laser-Induced Imaging and Dual-Modal Phototherapy. Hu X; Tian H; Jiang W; Song A; Li Z; Luan Y Small; 2018 Dec; 14(52):e1802994. PubMed ID: 30474224 [TBL] [Abstract][Full Text] [Related]
6. Light-activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer. Sun L; Li Q; Hou M; Gao Y; Yang R; Zhang L; Xu Z; Kang Y; Xue P Biomater Sci; 2018 Oct; 6(11):2881-2895. PubMed ID: 30192355 [TBL] [Abstract][Full Text] [Related]
7. Multifunctional theranostic agents based on prussian blue nanoparticles for tumor targeted and MRI-guided photodynamic/photothermal combined treatment. Lin X; Cao Y; Xue Y; Wu F; Yu F; Wu M; Zhu X Nanotechnology; 2020 Mar; 31(13):135101. PubMed ID: 31783383 [TBL] [Abstract][Full Text] [Related]
8. A biodegradable nano-photosensitizer with photoactivatable singlet oxygen generation for synergistic phototherapy. Shen J; Chen D; Liu Y; Gao G; Liu Z; Wang G; Wu C; Fang X J Mater Chem B; 2021 Jun; 9(24):4826-4831. PubMed ID: 34121099 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. Lee SJ; Koo H; Jeong H; Huh MS; Choi Y; Jeong SY; Byun Y; Choi K; Kim K; Kwon IC J Control Release; 2011 May; 152(1):21-9. PubMed ID: 21457740 [TBL] [Abstract][Full Text] [Related]
10. Polylysine modified conjugated polymer nanoparticles loaded with the singlet oxygen probe 1,3-diphenylisobenzofuran and the photosensitizer indocyanine green for use in fluorometric sensing and in photodynamic therapy. Wang XH; Yu YX; Cheng K; Yang W; Liu YA; Peng HS Mikrochim Acta; 2019 Nov; 186(12):842. PubMed ID: 31768653 [TBL] [Abstract][Full Text] [Related]
11. Near-infrared light and redox dual-activatable nanosystems for synergistically cascaded cancer phototherapy with reduced skin photosensitization. Li Y; Hu D; Pan M; Qu Y; Chu B; Liao J; Zhou X; Liu Q; Cheng S; Chen Y; Wei Q; Qian Z Biomaterials; 2022 Sep; 288():121700. PubMed ID: 36049897 [TBL] [Abstract][Full Text] [Related]
12. Iodinated photosensitizing chitosan: self-assembly into tumor-homing nanoparticles with enhanced singlet oxygen generation. Lim CK; Shin J; Kwon IC; Jeong SY; Kim S Bioconjug Chem; 2012 May; 23(5):1022-8. PubMed ID: 22515499 [TBL] [Abstract][Full Text] [Related]
14. A Trojan horse biomimetic delivery strategy using mesenchymal stem cells for PDT/PTT therapy against lung melanoma metastasis. Ouyang X; Wang X; Kraatz HB; Ahmadi S; Gao J; Lv Y; Sun X; Huang Y Biomater Sci; 2020 Feb; 8(4):1160-1170. PubMed ID: 31848537 [TBL] [Abstract][Full Text] [Related]
15. Dual-step irradiation strategy to sequentially destroy singlet oxygen-responsive polymeric micelles and boost photodynamic cancer therapy. Deng K; Yu H; Li JM; Li KH; Zhao HY; Ke M; Huang SW Biomaterials; 2021 Aug; 275():120959. PubMed ID: 34147717 [TBL] [Abstract][Full Text] [Related]
16. Ultrasmall MoS Li P; Liu L; Lu Q; Yang S; Yang L; Cheng Y; Wang Y; Wang S; Song Y; Tan F; Li N ACS Appl Mater Interfaces; 2019 Feb; 11(6):5771-5781. PubMed ID: 30653297 [TBL] [Abstract][Full Text] [Related]
17. Beta-carotene-bound albumin nanoparticles modified with chlorin e6 for breast tumor ablation based on photodynamic therapy. Phuong PTT; Lee S; Lee C; Seo B; Park S; Oh KT; Lee ES; Choi HG; Shin BS; Youn YS Colloids Surf B Biointerfaces; 2018 Nov; 171():123-133. PubMed ID: 30025374 [TBL] [Abstract][Full Text] [Related]
18. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. Li X; Gao M; Xin K; Zhang L; Ding D; Kong D; Wang Z; Shi Y; Kiessling F; Lammers T; Cheng J; Zhao Y J Control Release; 2017 Aug; 260():12-21. PubMed ID: 28527734 [TBL] [Abstract][Full Text] [Related]
19. Photosensitizer-Conjugated Albumin-Polypyrrole Nanoparticles for Imaging-Guided In Vivo Photodynamic/Photothermal Therapy. Song X; Liang C; Gong H; Chen Q; Wang C; Liu Z Small; 2015 Aug; 11(32):3932-41. PubMed ID: 25925790 [TBL] [Abstract][Full Text] [Related]
20. MMP2-Targeting and Redox-Responsive PEGylated Chlorin e6 Nanoparticles for Cancer Near-Infrared Imaging and Photodynamic Therapy. Hou W; Xia F; Alves CS; Qian X; Yang Y; Cui D ACS Appl Mater Interfaces; 2016 Jan; 8(2):1447-57. PubMed ID: 26638778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]