These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31951376)

  • 1. Hyperstable
    Kimura N; Mochizuki K; Umezawa K; Hecht MH; Arai R
    ACS Synth Biol; 2020 Feb; 9(2):254-259. PubMed ID: 31951376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational thermostabilisation of four-helix bundle dimeric de novo proteins.
    Irumagawa S; Kobayashi K; Saito Y; Miyata T; Umetsu M; Kameda T; Arai R
    Sci Rep; 2021 Apr; 11(1):7526. PubMed ID: 33824364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks.
    Kobayashi N; Inano K; Sasahara K; Sato T; Miyazawa K; Fukuma T; Hecht MH; Song C; Murata K; Arai R
    ACS Synth Biol; 2018 May; 7(5):1381-1394. PubMed ID: 29690759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembling Nano-Architectures Created from a Protein Nano-Building Block Using an Intermolecularly Folded Dimeric de Novo Protein.
    Kobayashi N; Yanase K; Sato T; Unzai S; Hecht MH; Arai R
    J Am Chem Soc; 2015 Sep; 137(35):11285-93. PubMed ID: 26120734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain-swapped dimeric structure of a stable and functional de novo four-helix bundle protein, WA20.
    Arai R; Kobayashi N; Kimura A; Sato T; Matsuo K; Wang AF; Platt JM; Bradley LH; Hecht MH
    J Phys Chem B; 2012 Jun; 116(23):6789-97. PubMed ID: 22397676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembling Lectin Nano-Block Oligomers Enhance Binding Avidity to Glycans.
    Irumagawa S; Hiemori K; Saito S; Tateno H; Arai R
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks.
    Kobayashi N; Arai R
    Curr Opin Biotechnol; 2017 Aug; 46():57-65. PubMed ID: 28160725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Dynamic Hydrophobic Core and Surface Salt Bridges Thermostabilize a Designed Three-Helix Bundle.
    Nguyen C; Young JT; Slade GG; Oliveira RJ; McCully ME
    Biophys J; 2019 Feb; 116(4):621-632. PubMed ID: 30704856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of helical linkers for fusion proteins and protein-based nanostructures.
    Arai R
    Methods Enzymol; 2021; 647():209-230. PubMed ID: 33482989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational de novo design of a four-helix bundle protein--DND_4HB.
    Murphy GS; Sathyamoorthy B; Der BS; Machius MC; Pulavarti SV; Szyperski T; Kuhlman B
    Protein Sci; 2015 Apr; 24(4):434-45. PubMed ID: 25287625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of potential helix-capping residues into an engineered helical protein.
    Parker MH; Hefford MA
    Biotechnol Appl Biochem; 1998 Aug; 28(1):69-76. PubMed ID: 9693091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dimerization domain of HNF-1alpha: structure and plasticity of an intertwined four-helix bundle with application to diabetes mellitus.
    Narayana N; Hua Q; Weiss MA
    J Mol Biol; 2001 Jul; 310(3):635-58. PubMed ID: 11439029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural resolution of switchable states of a de novo peptide assembly.
    Dawson WM; Lang EJM; Rhys GG; Shelley KL; Williams C; Brady RL; Crump MP; Mulholland AJ; Woolfson DN
    Nat Commun; 2021 Mar; 12(1):1530. PubMed ID: 33750792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic core malleability of a de novo designed three-helix bundle protein.
    Walsh ST; Sukharev VI; Betz SF; Vekshin NL; DeGrado WF
    J Mol Biol; 2001 Jan; 305(2):361-73. PubMed ID: 11124911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats.
    Urvoas A; Guellouz A; Valerio-Lepiniec M; Graille M; Durand D; Desravines DC; van Tilbeurgh H; Desmadril M; Minard P
    J Mol Biol; 2010 Nov; 404(2):307-27. PubMed ID: 20887736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monomeric state of S100P protein: Experimental and molecular dynamics study.
    Permyakov SE; Denesyuk AI; Denessiouk KA; Permyakova ME; Kazakov AS; Ismailov RG; Rastrygina VA; Sokolov AS; Permyakov EA
    Cell Calcium; 2019 Jun; 80():152-159. PubMed ID: 31103949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, expression, and initial characterization of MB1, a de novo protein enriched in essential amino acids.
    Beauregard M; Dupont C; Teather RM; Hefford MA
    Biotechnology (N Y); 1995 Sep; 13(9):974-81. PubMed ID: 9636274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redesigning the topology of a four-helix-bundle protein: monomeric Rop.
    Predki PF; Regan L
    Biochemistry; 1995 Aug; 34(31):9834-9. PubMed ID: 7543279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A designed branched three-helix bundle protein dimer.
    Dolphin GT
    J Am Chem Soc; 2006 Jun; 128(22):7287-90. PubMed ID: 16734482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.