These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31951387)

  • 1. Concentration Enrichment, Separation, and Cation Exchange in Nanoliter-Scale Water-in-Oil Droplets.
    Kim S; Ganapathysubramanian B; Anand RK
    J Am Chem Soc; 2020 Feb; 142(6):3196-3204. PubMed ID: 31951387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-module microfluidic platform for continuous pre-concentration of water-soluble ions and separation of oil droplets from oil-in-water (O/W) emulsions using a DC-biased AC electrokinetic technique.
    Das D; Phan DT; Zhao Y; Kang Y; Chan V; Yang C
    Electrophoresis; 2017 Mar; 38(5):645-652. PubMed ID: 27935087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-chip dilution in nanoliter droplets.
    Thakur R; Amin AM; Wereley S
    Analyst; 2015 Sep; 140(17):5855-9. PubMed ID: 26196035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules.
    Chowdhury MS; Zheng W; Kumari S; Heyman J; Zhang X; Dey P; Weitz DA; Haag R
    Nat Commun; 2019 Oct; 10(1):4546. PubMed ID: 31586046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel Sampling of Nanoliter Droplet Arrays for Noninvasive Protein Analysis in Discrete Yeast Cultivations by MALDI-MS.
    Haidas D; Napiorkowska M; Schmitt S; Dittrich PS
    Anal Chem; 2020 Mar; 92(5):3810-3818. PubMed ID: 31990188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-Induced Phase Transfer of Cationic Dyes for Fluorescence-Based Electrolyte Sensing in Droplet Microfluidics.
    Wang R; Zhou Y; Ghanbari Ghalehjoughi N; Mawaldi Y; Wang X
    Anal Chem; 2021 Oct; 93(40):13694-13702. PubMed ID: 34590485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoliter droplet viscometer with additive-free operation.
    Livak-Dahl E; Lee J; Burns MA
    Lab Chip; 2013 Jan; 13(2):297-301. PubMed ID: 23192296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation of single cells inside nanoliter water droplets using acoustic forces.
    Gerlt MS; Haidas D; Ratschat A; Suter P; Dittrich PS; Dual J
    Biomicrofluidics; 2020 Nov; 14(6):064112. PubMed ID: 33381252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet confinement and fluorescence measurement of single molecules.
    Goldner LS; Jofre AM; Tang J
    Methods Enzymol; 2010; 472():61-88. PubMed ID: 20580960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets.
    Küster SK; Fagerer SR; Verboket PE; Eyer K; Jefimovs K; Zenobi R; Dittrich PS
    Anal Chem; 2013 Feb; 85(3):1285-9. PubMed ID: 23289755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacing microwells with nanoliter compartments: a sampler generating high-resolution concentration gradients for quantitative biochemical analyses in droplets.
    Gielen F; Buryska T; Van Vliet L; Butz M; Damborsky J; Prokop Z; Hollfelder F
    Anal Chem; 2015 Jan; 87(1):624-32. PubMed ID: 25496166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED).
    Jeong HH; Yelleswarapu VR; Yadavali S; Issadore D; Lee D
    Lab Chip; 2015 Dec; 15(23):4387-92. PubMed ID: 26428950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications.
    Woronoff G; El Harrak A; Mayot E; Schicke O; Miller OJ; Soumillion P; Griffiths AD; Ryckelynck M
    Anal Chem; 2011 Apr; 83(8):2852-7. PubMed ID: 21413778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new droplet breakup phenomenon in electrokinetic flow through a microchannel constriction.
    Ji X; Zhou T; Deng Y; Shi L; Zhang X; Woo Joo S
    Electrophoresis; 2020 Jun; 41(10-11):758-760. PubMed ID: 31177552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of picoliter droplets with defined contents and concentration gradients from the separation of chemical mixtures.
    Theberge AB; Whyte G; Huck WT
    Anal Chem; 2010 May; 82(9):3449-53. PubMed ID: 20373759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-demand generation of monodisperse femtolitre droplets by shape-induced shear.
    Jung SY; Retterer ST; Collier CP
    Lab Chip; 2010 Oct; 10(20):2688-94. PubMed ID: 20721397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment.
    Wang H; Liu Z; Kim S; Koo C; Cho Y; Jang DY; Kim YJ; Han A
    Lab Chip; 2014 Mar; 14(5):947-56. PubMed ID: 24402640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional bionetworks from nanoliter water droplets.
    Holden MA; Needham D; Bayley H
    J Am Chem Soc; 2007 Jul; 129(27):8650-5. PubMed ID: 17571891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.