These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 31951393)

  • 1. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling.
    Cowper NGW; Chernowsky CP; Williams OP; Wickens ZK
    J Am Chem Soc; 2020 Feb; 142(5):2093-2099. PubMed ID: 31951393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp(3)-sp(2) Cross-Coupling.
    Tellis JC; Kelly CB; Primer DN; Jouffroy M; Patel NR; Molander GA
    Acc Chem Res; 2016 Jul; 49(7):1429-39. PubMed ID: 27379472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of aryl halides by consecutive visible light-induced electron transfer processes.
    Ghosh I; Ghosh T; Bardagi JI; König B
    Science; 2014 Nov; 346(6210):725-8. PubMed ID: 25378618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides.
    Chmiel AF; Williams OP; Chernowsky CP; Yeung CS; Wickens ZK
    J Am Chem Soc; 2021 Jul; 143(29):10882-10889. PubMed ID: 34255971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mild, Redox-Neutral Formylation of Aryl Chlorides through the Photocatalytic Generation of Chlorine Radicals.
    Nielsen MK; Shields BJ; Liu J; Williams MJ; Zacuto MJ; Doyle AG
    Angew Chem Int Ed Engl; 2017 Jun; 56(25):7191-7194. PubMed ID: 28471521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
    Staveness D; Bosque I; Stephenson CR
    Acc Chem Res; 2016 Oct; 49(10):2295-2306. PubMed ID: 27529484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-Selective Aroylation of Activated Alkenes by Photoredox Catalysis.
    Lei Z; Banerjee A; Kusevska E; Rizzo E; Liu P; Ngai MY
    Angew Chem Int Ed Engl; 2019 May; 58(22):7318-7323. PubMed ID: 30994977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching on elusive organometallic mechanisms with photoredox catalysis.
    Terrett JA; Cuthbertson JD; Shurtleff VW; MacMillan DW
    Nature; 2015 Aug; 524(7565):330-4. PubMed ID: 26266976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.
    Wallentin CJ; Nguyen JD; Stephenson CR
    Chimia (Aarau); 2012; 66(6):394-8. PubMed ID: 22871282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins.
    Millet A; Lefebvre Q; Rueping M
    Chemistry; 2016 Sep; 22(38):13464-8. PubMed ID: 27321136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct β-functionalization of cyclic ketones with aryl ketones via the merger of photoredox and organocatalysis.
    Petronijević FR; Nappi M; MacMillan DW
    J Am Chem Soc; 2013 Dec; 135(49):18323-6. PubMed ID: 24237366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-Electrophile Coupling of Unactivated Alkyl Chlorides.
    Sakai HA; Liu W; Le CC; MacMillan DWC
    J Am Chem Soc; 2020 Jul; 142(27):11691-11697. PubMed ID: 32564602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Electron Transmetalation: Photoredox/Nickel Dual Catalytic Cross-Coupling of Secondary Alkyl β-Trifluoroboratoketones and -esters with Aryl Bromides.
    Tellis JC; Amani J; Molander GA
    Org Lett; 2016 Jun; 18(12):2994-7. PubMed ID: 27265019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism-Driven Development of Group 10 Metal-Catalyzed Decarbonylative Coupling Reactions.
    Lalloo N; Brigham CE; Sanford MS
    Acc Chem Res; 2022 Dec; 55(23):3430-3444. PubMed ID: 36382937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible-Light Copper Nanocluster Catalysis for the C-N Coupling of Aryl Chlorides at Room Temperature.
    Sagadevan A; Ghosh A; Maity P; Mohammed OF; Bakr OM; Rueping M
    J Am Chem Soc; 2022 Jul; 144(27):12052-12061. PubMed ID: 35766900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions.
    Huang H; Steiniger KA; Lambert TH
    J Am Chem Soc; 2022 Jul; 144(28):12567-12583. PubMed ID: 35816101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.