These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 31951398)
1. The Grignard Reaction - Unraveling a Chemical Puzzle. Peltzer RM; Gauss J; Eisenstein O; Cascella M J Am Chem Soc; 2020 Feb; 142(6):2984-2994. PubMed ID: 31951398 [TBL] [Abstract][Full Text] [Related]
2. How Solvent Dynamics Controls the Schlenk Equilibrium of Grignard Reagents: A Computational Study of CH Peltzer RM; Eisenstein O; Nova A; Cascella M J Phys Chem B; 2017 Apr; 121(16):4226-4237. PubMed ID: 28358509 [TBL] [Abstract][Full Text] [Related]
3. Distinguishing Organomagnesium Species in the Grignard Addition to Ketones with X-Ray Spectroscopy. Restaino L; Mincigrucci R; Kowalewski M Chemistry; 2024 Dec; 30(70):e202402099. PubMed ID: 39297557 [TBL] [Abstract][Full Text] [Related]
4. Association and Dissociation of Grignard Reagents RMgCl and Their Turbo Variant RMgCl⋅LiCl. Schnegelsberg C; Bachmann S; Kolter M; Auth T; John M; Stalke D; Koszinowski K Chemistry; 2016 Jun; 22(23):7752-62. PubMed ID: 27150118 [TBL] [Abstract][Full Text] [Related]
5. Quantum Chemical Investigation of Dimerization in the Schlenk Equilibrium of Thiophene Grignard Reagents. Curtis ER; Hannigan MD; Vitek AK; Zimmerman PM J Phys Chem A; 2020 Feb; 124(8):1480-1488. PubMed ID: 32011885 [TBL] [Abstract][Full Text] [Related]
6. Morphological Plasticity of LiCl Clusters Interacting with Grignard Reagent in Tetrahydrofuran. de Giovanetti M; Hopen Eliasson SH; Castro AC; Eisenstein O; Cascella M J Am Chem Soc; 2023 Aug; 145(30):16305-16309. PubMed ID: 37471267 [TBL] [Abstract][Full Text] [Related]
7. Ion cyclotron resonance spectroscopy. Cyclotron double resonance provides a new technique for the study of ion-molecule reaction mechanisms. Baldeschwieler JD Science; 1968 Jan; 159(3812):263-73. PubMed ID: 4863791 [TBL] [Abstract][Full Text] [Related]
8. Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity. Westerhausen M; Koch A; Görls H; Krieck S Chemistry; 2017 Jan; 23(7):1456-1483. PubMed ID: 27976821 [TBL] [Abstract][Full Text] [Related]
9. Added-metal-free catalytic nucleophilic addition of Grignard reagents to ketones. Zong H; Huang H; Liu J; Bian G; Song L J Org Chem; 2012 May; 77(10):4645-52. PubMed ID: 22524204 [TBL] [Abstract][Full Text] [Related]
10. Intramolecular C-F and C-H bond cleavage promoted by butadienyl heavy Grignard reagents. Li H; Wang XY; Wei B; Xu L; Zhang WX; Pei J; Xi Z Nat Commun; 2014 Jul; 5():4508. PubMed ID: 25047678 [TBL] [Abstract][Full Text] [Related]
11. Homocoupling and Heterocoupling of Grignard Perfluorobenzene Reagents via Aryne Intermediates: A DFT Study. Gutsev LG; Gutsev GL; Moore Tibbetts K; Jena P J Phys Chem A; 2019 Nov; 123(45):9693-9700. PubMed ID: 31557029 [TBL] [Abstract][Full Text] [Related]
12. Applications of Radical Carbonylation and Amine Addition Chemistry: 1,4-Hydrogen Transfer of 1-Hydroxylallyl Radicals. Matsubara H; Kawamoto T; Fukuyama T; Ryu I Acc Chem Res; 2018 Sep; 51(9):2023-2035. PubMed ID: 30137961 [TBL] [Abstract][Full Text] [Related]
13. Mechanochemical generation of aryl barium nucleophiles from unactivated barium metal. Kubota K; Kawamura S; Jiang J; Maeda S; Ito H Chem Sci; 2024 Oct; 15(42):17453-9. PubMed ID: 39371463 [TBL] [Abstract][Full Text] [Related]
14. Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation. Ruf A; Kanawati B; Schmitt-Kopplin P J Mol Model; 2018 Mar; 24(4):106. PubMed ID: 29589173 [TBL] [Abstract][Full Text] [Related]
15. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study. Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769 [TBL] [Abstract][Full Text] [Related]
16. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations. Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751 [TBL] [Abstract][Full Text] [Related]
17. Theoretical studies on the mechanism of conversion of androgens to estrogens by aromatase. Korzekwa KR; Trager WF; Smith SJ; Osawa Y; Gillette JR Biochemistry; 1991 Jun; 30(25):6155-62. PubMed ID: 1647815 [TBL] [Abstract][Full Text] [Related]
18. The solvent effect on two competing reaction mechanisms involving hypervalent iodine reagents (λ(3)-iodanes): facing the limit of the stationary quantum chemical approach. Sala O; Lüthi HP; Togni A J Comput Chem; 2014 Nov; 35(29):2122-31. PubMed ID: 25220398 [TBL] [Abstract][Full Text] [Related]
19. Experimental and theoretical study of the photodissociation reaction of thiophenol at 243 nm: intramolecular orbital alignment of the phenylthiyl radical. Lim IS; Lim JS; Lee YS; Kim SK J Chem Phys; 2007 Jan; 126(3):034306. PubMed ID: 17249870 [TBL] [Abstract][Full Text] [Related]
20. Controlling the ambiphilic nature of σ-arylpalladium intermediates in intramolecular cyclization reactions. Solé D; Fernández I Acc Chem Res; 2014 Jan; 47(1):168-79. PubMed ID: 23957464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]