BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31951398)

  • 1. The Grignard Reaction - Unraveling a Chemical Puzzle.
    Peltzer RM; Gauss J; Eisenstein O; Cascella M
    J Am Chem Soc; 2020 Feb; 142(6):2984-2994. PubMed ID: 31951398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Solvent Dynamics Controls the Schlenk Equilibrium of Grignard Reagents: A Computational Study of CH
    Peltzer RM; Eisenstein O; Nova A; Cascella M
    J Phys Chem B; 2017 Apr; 121(16):4226-4237. PubMed ID: 28358509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association and Dissociation of Grignard Reagents RMgCl and Their Turbo Variant RMgCl⋅LiCl.
    Schnegelsberg C; Bachmann S; Kolter M; Auth T; John M; Stalke D; Koszinowski K
    Chemistry; 2016 Jun; 22(23):7752-62. PubMed ID: 27150118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Chemical Investigation of Dimerization in the Schlenk Equilibrium of Thiophene Grignard Reagents.
    Curtis ER; Hannigan MD; Vitek AK; Zimmerman PM
    J Phys Chem A; 2020 Feb; 124(8):1480-1488. PubMed ID: 32011885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological Plasticity of LiCl Clusters Interacting with Grignard Reagent in Tetrahydrofuran.
    de Giovanetti M; Hopen Eliasson SH; Castro AC; Eisenstein O; Cascella M
    J Am Chem Soc; 2023 Aug; 145(30):16305-16309. PubMed ID: 37471267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion cyclotron resonance spectroscopy. Cyclotron double resonance provides a new technique for the study of ion-molecule reaction mechanisms.
    Baldeschwieler JD
    Science; 1968 Jan; 159(3812):263-73. PubMed ID: 4863791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity.
    Westerhausen M; Koch A; Görls H; Krieck S
    Chemistry; 2017 Jan; 23(7):1456-1483. PubMed ID: 27976821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Added-metal-free catalytic nucleophilic addition of Grignard reagents to ketones.
    Zong H; Huang H; Liu J; Bian G; Song L
    J Org Chem; 2012 May; 77(10):4645-52. PubMed ID: 22524204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular C-F and C-H bond cleavage promoted by butadienyl heavy Grignard reagents.
    Li H; Wang XY; Wei B; Xu L; Zhang WX; Pei J; Xi Z
    Nat Commun; 2014 Jul; 5():4508. PubMed ID: 25047678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homocoupling and Heterocoupling of Grignard Perfluorobenzene Reagents via Aryne Intermediates: A DFT Study.
    Gutsev LG; Gutsev GL; Moore Tibbetts K; Jena P
    J Phys Chem A; 2019 Nov; 123(45):9693-9700. PubMed ID: 31557029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of Radical Carbonylation and Amine Addition Chemistry: 1,4-Hydrogen Transfer of 1-Hydroxylallyl Radicals.
    Matsubara H; Kawamoto T; Fukuyama T; Ryu I
    Acc Chem Res; 2018 Sep; 51(9):2023-2035. PubMed ID: 30137961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation.
    Ruf A; Kanawati B; Schmitt-Kopplin P
    J Mol Model; 2018 Mar; 24(4):106. PubMed ID: 29589173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study.
    Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C
    J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.
    Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W
    J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical studies on the mechanism of conversion of androgens to estrogens by aromatase.
    Korzekwa KR; Trager WF; Smith SJ; Osawa Y; Gillette JR
    Biochemistry; 1991 Jun; 30(25):6155-62. PubMed ID: 1647815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The solvent effect on two competing reaction mechanisms involving hypervalent iodine reagents (λ(3)-iodanes): facing the limit of the stationary quantum chemical approach.
    Sala O; Lüthi HP; Togni A
    J Comput Chem; 2014 Nov; 35(29):2122-31. PubMed ID: 25220398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical study of the photodissociation reaction of thiophenol at 243 nm: intramolecular orbital alignment of the phenylthiyl radical.
    Lim IS; Lim JS; Lee YS; Kim SK
    J Chem Phys; 2007 Jan; 126(3):034306. PubMed ID: 17249870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the ambiphilic nature of σ-arylpalladium intermediates in intramolecular cyclization reactions.
    Solé D; Fernández I
    Acc Chem Res; 2014 Jan; 47(1):168-79. PubMed ID: 23957464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction Dynamics of O((3)P) + Propyne: I. Primary Products, Branching Ratios, and Role of Intersystem Crossing from Crossed Molecular Beam Experiments.
    Vanuzzo G; Balucani N; Leonori F; Stranges D; Nevrly V; Falcinelli S; Bergeat A; Casavecchia P; Cavallotti C
    J Phys Chem A; 2016 Jul; 120(27):4603-18. PubMed ID: 27046287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring-strain-enabled reaction discovery: new heterocycles from bicyclo[1.1.0]butanes.
    Walczak MA; Krainz T; Wipf P
    Acc Chem Res; 2015 Apr; 48(4):1149-58. PubMed ID: 25775119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.