These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 31951445)

  • 1. Multitip Near-Field Scanning Thermal Microscopy.
    Ben-Abdallah P
    Phys Rev Lett; 2019 Dec; 123(26):264301. PubMed ID: 31951445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant heat transfer in the crossover regime between conduction and radiation.
    Kloppstech K; Könne N; Biehs SA; Rodriguez AW; Worbes L; Hellmann D; Kittel A
    Nat Commun; 2017 Feb; 8():. PubMed ID: 28198369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-body amplification of photon heat tunneling.
    Messina R; Antezza M; Ben-Abdallah P
    Phys Rev Lett; 2012 Dec; 109(24):244302. PubMed ID: 23368325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-field thermal transistor.
    Ben-Abdallah P; Biehs SA
    Phys Rev Lett; 2014 Jan; 112(4):044301. PubMed ID: 24580455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps.
    Song B; Thompson D; Fiorino A; Ganjeh Y; Reddy P; Meyhofer E
    Nat Nanotechnol; 2016 Jun; 11(6):509-514. PubMed ID: 26950244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale thermometry by scanning thermal microscopy.
    Menges F; Riel H; Stemmer A; Gotsmann B
    Rev Sci Instrum; 2016 Jul; 87(7):074902. PubMed ID: 27475585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.
    Hoogeboom-Pot KM; Hernandez-Charpak JN; Gu X; Frazer TD; Anderson EH; Chao W; Falcone RW; Yang R; Murnane MM; Kapteyn HC; Nardi D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4846-51. PubMed ID: 25831491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-field thermal upconversion and energy transfer through a Kerr medium.
    Khandekar C; Rodriguez AW
    Opt Express; 2017 Sep; 25(19):23164-23180. PubMed ID: 29041619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart thermal management with near-field thermal radiation [invited].
    Latella I; Biehs SA; Ben-Abdallah P
    Opt Express; 2021 Aug; 29(16):24816-24833. PubMed ID: 34614829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant near-field radiative heat transfer between ultrathin metallic films.
    Wang L; Bie M; Cai W; Ge L; Ji Z; Jia Y; Gong K; Zhang X; Wang J; Xu J
    Opt Express; 2019 Dec; 27(25):36790-36798. PubMed ID: 31873451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of near-field radiative heat transfer using polar dielectric thin films.
    Song B; Ganjeh Y; Sadat S; Thompson D; Fiorino A; Fernández-Hurtado V; Feist J; Garcia-Vidal FJ; Cuevas JC; Reddy P; Meyhofer E
    Nat Nanotechnol; 2015 Mar; 10(3):253-8. PubMed ID: 25705866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contactless near-field scanning thermoreflectance imaging.
    Ezugwu S; Kazemian S; Choi DW; Fanchini G
    Nanoscale; 2017 Mar; 9(12):4097-4106. PubMed ID: 28276562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.
    O'Callahan BT; Lewis WE; Möbius S; Stanley JC; Muller EA; Raschke MB
    Opt Express; 2015 Dec; 23(25):32063-74. PubMed ID: 26698997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale thermal probing.
    Yue Y; Wang X
    Nano Rev; 2012; 3():. PubMed ID: 22419968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.
    Hermann P; Hoehl A; Ulrich G; Fleischmann C; Hermelink A; Kästner B; Patoka P; Hornemann A; Beckhoff B; Rühl E; Ulm G
    Opt Express; 2014 Jul; 22(15):17948-58. PubMed ID: 25089414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons.
    Lim M; Song J; Lee SS; Lee BJ
    Nat Commun; 2018 Oct; 9(1):4302. PubMed ID: 30327494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.
    Kim K; Jeong W; Lee W; Reddy P
    ACS Nano; 2012 May; 6(5):4248-57. PubMed ID: 22530657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dancing the tight rope on the nanoscale--Calibrating a heat flux sensor of a scanning thermal microscope.
    Kloppstech K; Könne N; Worbes L; Hellmann D; Kittel A
    Rev Sci Instrum; 2015 Nov; 86(11):114902. PubMed ID: 26628160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced near-field heat flow of a monolayer dielectric island.
    Worbes L; Hellmann D; Kittel A
    Phys Rev Lett; 2013 Mar; 110(13):134302. PubMed ID: 23581325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.