These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 31952012)
1. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters. Barik SK; Russell WR; Moar KM; Cruickshank M; Scobbie L; Duncan G; Hoggard N J Nutr Biochem; 2020 Apr; 78():108325. PubMed ID: 31952012 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370 [TBL] [Abstract][Full Text] [Related]
3. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake. Li K; Yao F; Du J; Deng X; Li C J Agric Food Chem; 2018 Feb; 66(7):1629-1637. PubMed ID: 29388426 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
6. Scopoletin inhibits α-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes. Jang JH; Park JE; Han JS Eur J Pharmacol; 2018 Sep; 834():152-156. PubMed ID: 30031794 [TBL] [Abstract][Full Text] [Related]
7. Carbohydrate Hydrolase-Inhibitory Activity of Juice-Based Phenolic Extracts in Correlation to Their Anthocyanin/Copigment Profile. Berger K; Ostberg-Potthoff JJ; Bakuradze T; Winterhalter P; Richling E Molecules; 2020 Nov; 25(22):. PubMed ID: 33182561 [TBL] [Abstract][Full Text] [Related]
8. Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention. Nyambe-Silavwe H; Williamson G Br J Nutr; 2016 Aug; 116(3):443-50. PubMed ID: 27278405 [TBL] [Abstract][Full Text] [Related]
9. Selected tea and tea pomace extracts inhibit intestinal α-glucosidase activity in vitro and postprandial hyperglycemia in vivo. Oh J; Jo SH; Kim JS; Ha KS; Lee JY; Choi HY; Yu SY; Kwon YI; Kim YC Int J Mol Sci; 2015 Apr; 16(4):8811-25. PubMed ID: 25906471 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Glucose Uptake in Human Liver Cells and Inhibition of Carbohydrate Hydrolyzing Enzymes by Nordic Berry Extracts. Ho GTT; Nguyen TKY; Kase ET; Tadesse M; Barsett H; Wangensteen H Molecules; 2017 Oct; 22(10):. PubMed ID: 29064442 [TBL] [Abstract][Full Text] [Related]
11. A phlorotannin constituent of Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice. Lee HA; Lee JH; Han JS Pharm Biol; 2017 Dec; 55(1):1149-1154. PubMed ID: 28219252 [TBL] [Abstract][Full Text] [Related]
12. Comparisons of carbohydrate-utilizing enzymes inhibitory effects and chemical profiles of five deeply colored food extracts. Wu Y; Zhou Q; Wang Y; Zhang S; Zhang JL J Food Biochem; 2019 Dec; 43(12):e13069. PubMed ID: 31589345 [TBL] [Abstract][Full Text] [Related]
13. Antioxidant Activity and Inhibition of Carbohydrate Digestive Enzymes Activities of Marghich M; Daoudi NE; Amrani O; Addi M; Hano C; Chen JT; Mekhfi H; Ziyyat A; Bnouham M; Aziz M Front Biosci (Schol Ed); 2022 Sep; 14(4):25. PubMed ID: 36575835 [TBL] [Abstract][Full Text] [Related]
14. Antidiabetic potential of Lysiphyllum strychnifolium (Craib) A. Schmitz compounds in human intestinal epithelial Caco-2 cells and molecular docking-based approaches. Noonong K; Pranweerapaiboon K; Chaithirayanon K; Surayarn K; Ditracha P; Changklungmoa N; Kueakhai P; Hiransai P; Bunluepuech K BMC Complement Med Ther; 2022 Sep; 22(1):235. PubMed ID: 36064352 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo effects of standardized extract and fractions of Phaleria macrocarpa fruits pericarp on lead carbohydrate digesting enzymes. Ali RB; Atangwho IJ; Kuar N; Ahmad M; Mahmud R; Asmawi MZ BMC Complement Altern Med; 2013 Feb; 13():39. PubMed ID: 23425283 [TBL] [Abstract][Full Text] [Related]
16. Hypoglycaemic activity of the anthocyanin enriched fraction of Lycium ruthenicum Murr. Fruits and its ingredient identification via UPLC-triple-TOF-MS/MS. Ren L; Tan N; Ouyang J; Wang R; Tie F; Dong Q; Wang H; Hu N Food Chem; 2024 Dec; 461():140837. PubMed ID: 39151350 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of α-amylase and α-glucosidase by Morus australis fruit extract and its components iminosugar, anthocyanin, and glucose. Qiao Y; Ikeda Y; Ito M; Kimura T; Ikeuchi T; Takita T; Yasukawa K J Food Sci; 2022 Apr; 87(4):1672-1683. PubMed ID: 35397147 [TBL] [Abstract][Full Text] [Related]
18. Anti-diabetic Phenolic Compounds of Black Carrot (Daucus carota Subspecies sativus var. atrorubens Alef.) Inhibit Enzymes of Glucose Metabolism: An in silico and in vitro Validation. Karkute SG; Koley TK; Yengkhom BK; Tripathi A; Srivastava S; Maurya A; Singh B Med Chem; 2018; 14(6):641-649. PubMed ID: 29493459 [TBL] [Abstract][Full Text] [Related]
19. Phenolic compounds in berries of black, red, green, and white currants (Ribes sp.). Maatta K; Kamal-Eldin A; Törrönen R Antioxid Redox Signal; 2001 Dec; 3(6):981-93. PubMed ID: 11813993 [TBL] [Abstract][Full Text] [Related]
20. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Proença C; Ribeiro D; Freitas M; Fernandes E Crit Rev Food Sci Nutr; 2022; 62(12):3137-3207. PubMed ID: 33427491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]