BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31952275)

  • 21. Chemical vapor detection using a capacitive micromachined ultrasonic transducer.
    Lee HJ; Park KK; Kupnik M; Oralkan O; Khuri-Yakub BT
    Anal Chem; 2011 Dec; 83(24):9314-20. PubMed ID: 22124375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Template free synthesis of hollow ball-like nano-Fe2O3 and its application to the detection of dimethyl methylphosphonate at room temperature.
    Fan G; Wang Y; Hu M; Luo Z; Zhang K; Li G
    Sensors (Basel); 2012; 12(4):4594-604. PubMed ID: 22666047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conducting Electrospun Nanofibres: Monitoring of Iodine Doping of P3HT through Infrared (IRAV) and Raman (RaAV) Polaron Spectroscopic Features.
    Arrigoni A; Brambilla L; Castiglioni C; Bertarelli C
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vapor Sorption-Desorption Phenomena of HD and GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a Quartz Crystal Microbalance.
    Kittle JD; Grasdal EN; Kim SM; Levin NR; Davis PA; Kittle AL; Kittle IJ; Mulcahy JA; Keith BR
    ACS Omega; 2022 Jul; 7(26):22735-22742. PubMed ID: 35811928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ni-rGO Sensor Combined with Human Olfactory Receptor-Embedded Nanodiscs for Detecting Gas-Phase DMMP as a Simulant of Nerve Agents.
    Kim SO; Kim SG; Ahn H; Yoo J; Jang J; Park TH
    ACS Sens; 2023 Aug; 8(8):3095-3103. PubMed ID: 37555584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and characterization of nitrogen-doped-MWCNT@cobalt oxide for nerve agent simulant detection.
    Lama S; Choi HS; Ramesh S; Lee YJ; Kim JH
    Sci Rep; 2024 May; 14(1):11605. PubMed ID: 38773127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-performance p-hexafluoroisopropanol phenyl functionalized multi-walled carbon nanotube film on surface acoustic wave device for organophosphorus vapor detection.
    Wu Q; Li X; Wang X; Yuan Y; Bu X; Wu H; Li X; Han C; Wang X; Liu W
    Nanotechnology; 2022 Jun; 33(37):. PubMed ID: 35605577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of a nerve agent simulant using single-walled carbon nanotube networks: dimethyl-methyl-phosphonate.
    Kim Y; Lee S; Choi HH; Noh JS; Lee W
    Nanotechnology; 2010 Dec; 21(49):495501. PubMed ID: 21079292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative decomposition of dimethyl methylphosphonate on rutile TiO
    Tesvara C; Walenta C; Sautet P
    Phys Chem Chem Phys; 2022 Oct; 24(38):23402-23419. PubMed ID: 36128829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sorption of dimethyl methylphosphonate within Langmuir-Blodgett films of trisilanolphenyl polyhedral oligomeric silsesquioxane.
    Ferguson-McPherson MK; Low ER; Esker AR; Morris JR
    J Phys Chem B; 2005 Oct; 109(40):18914-20. PubMed ID: 16853435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A dimethyl methylphonate sensor based on HFIPPH modified SWCNTs.
    Wu H; Yuan Y; Wu Q; Bu X; Hu L; Li X; Wang X; Liu W
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 35008068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HFIP-Functionalized Co
    Alali KT; Liu J; Chen R; Liu Q; Zhang H; Li J; Hou J; Li R; Wang J
    Chemistry; 2019 Sep; 25(51):11892-11902. PubMed ID: 31309626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A smart chitosan-graphite molecular imprinted composite for the effective trapping and sensing of dimethyl methylphosphonate based on changes in resistance.
    Disley J; Gil-Ramírez G; Eaton P; Gonzalez-Rodriguez J
    Analyst; 2023 Oct; 148(20):5012-5021. PubMed ID: 37672009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carboxylic Acid-Functionalized Conducting-Polymer Nanotubes as Highly Sensitive Nerve-Agent Chemiresistors.
    Kwon OS; Park CS; Park SJ; Noh S; Kim S; Kong HJ; Bae J; Lee CS; Yoon H
    Sci Rep; 2016 Sep; 6():33724. PubMed ID: 27650635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and Characterization of MnO
    Lama S; Subedi S; Ramesh S; Shin K; Lee YJ; Kim JH
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Nanoporous Polymer Modified with Hexafluoroisopropanol to Detect Dimethyl Methylphosphonate.
    Wang X; Li X; Wu Q; Yuan Y; Liu W; Han C; Wang X
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption and decomposition of dimethyl methylphosphonate on size-selected (MoO
    Tang X; Hicks Z; Wang L; Ganteför G; Bowen KH; Tsyshevsky R; Sun J; Kuklja MM
    Phys Chem Chem Phys; 2018 Feb; 20(7):4840-4850. PubMed ID: 29383341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freestanding and Flexible β-MnO
    Kim W; Lee JS
    ACS Omega; 2021 Feb; 6(7):4988-4994. PubMed ID: 33644606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-dimensional photonic crystal sensor enabled by hydrophobic hydrogen-bonded organic Frameworks@Metal-Organic frameworks for trace nerve agents detection.
    Wang Z; Wang Y; Gao Y; Yan J; Chen Y
    Talanta; 2024 Jul; 274():125974. PubMed ID: 38552476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rational design of a Nile Red/polymer composite film for fluorescence sensing of organophosphonate vapors using hydrogen bond acidic polymers.
    Levitsky I; Krivoshlykov SG; Grate JW
    Anal Chem; 2001 Jul; 73(14):3441-8. PubMed ID: 11476246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.