BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31952591)

  • 1. Positional specificity of Flavobacterium johnsoniae acetylxylan esterase and acetyl group migration on xylan main chain.
    Puchart V; Gjermansen M; Mastihubová M; Mørkeberg Krogh KBR; Biely P
    Carbohydr Polym; 2020 Mar; 232():115783. PubMed ID: 31952591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redistribution of acetyl groups on the non-reducing end xylopyranosyl residues and their removal by xylan deacetylases.
    Puchart V; Biely P
    Appl Microbiol Biotechnol; 2015 May; 99(9):3865-73. PubMed ID: 25381188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose.
    Biely P; Cziszárová M; Agger JW; Li XL; Puchart V; Vršanská M; Eijsink VG; Westereng B
    Biochim Biophys Acta; 2014 Jan; 1840(1):516-25. PubMed ID: 24128930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode of action of acetylxylan esterases on acetyl glucuronoxylan and acetylated oligosaccharides generated by a GH10 endoxylanase.
    Biely P; Cziszárová M; Uhliariková I; Agger JW; Li XL; Eijsink VG; Westereng B
    Biochim Biophys Acta; 2013 Nov; 1830(11):5075-86. PubMed ID: 23891707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of fungal carbohydrate esterases of family CE16 on artificial and natural substrates.
    Puchart V; Agger JW; Berrin JG; Várnai A; Westereng B; Biely P
    J Biotechnol; 2016 Sep; 233():228-36. PubMed ID: 27439201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action of different types of endoxylanases on eucalyptus xylan in situ.
    Puchart V; Fraňová L; Mørkeberg Krogh KBR; Hoff T; Biely P
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1725-1736. PubMed ID: 29302718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional preferences of acetyl esterases from different CE families towards acetylated 4-O-methyl glucuronic acid-substituted xylo-oligosaccharides.
    Neumüller KG; de Souza AC; van Rijn JH; Streekstra H; Gruppen H; Schols HA
    Biotechnol Biofuels; 2015; 8(1):7. PubMed ID: 25642285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucuronoxylan 3-O-acetylated on uronic acid-substituted xylopyranosyl residues and its hydrolysis by GH10, GH11 and GH30 endoxylanases.
    Puchart V; Mørkeberg Krogh KBR; Biely P
    Carbohydr Polym; 2019 Feb; 205():217-224. PubMed ID: 30446098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans.
    Razeq FM; Jurak E; Stogios PJ; Yan R; Tenkanen M; Kabel MA; Wang W; Master ER
    Biotechnol Biofuels; 2018; 11():74. PubMed ID: 29588659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unique CE16 acetyl esterase from Podospora anserina active on polymeric xylan.
    Puchart V; Berrin JG; Haon M; Biely P
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10515-26. PubMed ID: 26329850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deacetylation of Arabinofuranosylated Xylopyranosyl Residues Related to Plant Xylan: Significant Differences Between Xylan Deacetylases Classified into Various Carbohydrate Esterase Families.
    Bella M; Poláková M; Puchart V
    Chembiochem; 2023 May; 24(9):e202200743. PubMed ID: 36779690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct roles of carbohydrate esterase family CE16 acetyl esterases and polymer-acting acetyl xylan esterases in xylan deacetylation.
    Koutaniemi S; van Gool MP; Juvonen M; Jokela J; Hinz SW; Schols HA; Tenkanen M
    J Biotechnol; 2013 Dec; 168(4):684-92. PubMed ID: 24140638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating Sequence and Structural Determinants of Carbohydrate Esterases for Complete Deacetylation of Substituted Xylans.
    Penttinen L; Kouhi V; Fauré R; Skarina T; Stogios P; Master E; Jurak E
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity and mode of action of acetylxylan esterase from Streptomyces lividans.
    Biely P; Côté GL; Kremnický L; Greene RV; Dupont C; Kluepfel D
    FEBS Lett; 1996 Nov; 396(2-3):257-60. PubMed ID: 8914998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action of acetylxylan esterase from Trichoderma reesei on acetylated methyl glycosides.
    Biely P; Côté GL; Kremnický L; Greene RV; Tenkanen M
    FEBS Lett; 1997 Dec; 420(2-3):121-4. PubMed ID: 9459293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of acetylxylan esterase from Schizophyllum commune: mode of action on acetylated carbohydrates.
    Biely P; Côté GL; Kremnický L; Weisleder D; Greene RV
    Biochim Biophys Acta; 1996 Dec; 1298(2):209-22. PubMed ID: 8980647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positional specifity of acetylxylan esterases on natural polysaccharide: an NMR study.
    Uhliariková I; Vršanská M; McCleary BV; Biely P
    Biochim Biophys Acta; 2013 Jun; 1830(6):3365-72. PubMed ID: 23375723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-coupled assay of acetylxylan esterases on monoacetylated 4-nitrophenyl beta-D-xylopyranosides.
    Biely P; Mastihubová M; la Grange DC; van Zyl WH; Prior BA
    Anal Biochem; 2004 Sep; 332(1):109-15. PubMed ID: 15301955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Acetylxylan Esterase from White-Rot Fungus
    Koh S; Imamura S; Fujino N; Mizuno M; Sato N; Makishima S; Biely P; Amano Y
    J Appl Glycosci (1999); 2019; 66(4):131-137. PubMed ID: 34429691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor.
    Arai T; Biely P; Uhliariková I; Sato N; Makishima S; Mizuno M; Nozaki K; Kaneko S; Amano Y
    J Biosci Bioeng; 2019 Feb; 127(2):222-230. PubMed ID: 30143337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.