These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 31952784)
1. Targeting NAD Kennedy BE; Sadek M; Elnenaei MO; Reiman A; Gujar SA Trends Cancer; 2020 Jan; 6(1):9-12. PubMed ID: 31952784 [TBL] [Abstract][Full Text] [Related]
2. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. van de Donk NWCJ; Usmani SZ Front Immunol; 2018; 9():2134. PubMed ID: 30294326 [TBL] [Abstract][Full Text] [Related]
3. CD38 Inhibits Prostate Cancer Metabolism and Proliferation by Reducing Cellular NAD Chmielewski JP; Bowlby SC; Wheeler FB; Shi L; Sui G; Davis AL; Howard TD; D'Agostino RB; Miller LD; Sirintrapun SJ; Cramer SD; Kridel SJ Mol Cancer Res; 2018 Nov; 16(11):1687-1700. PubMed ID: 30076241 [TBL] [Abstract][Full Text] [Related]
4. Therapeutic Opportunities with Pharmacological Inhibition of CD38 with Isatuximab. Martin TG; Corzo K; Chiron M; Velde HV; Abbadessa G; Campana F; Solanki M; Meng R; Lee H; Wiederschain D; Zhu C; Rak A; Anderson KC Cells; 2019 Nov; 8(12):. PubMed ID: 31779273 [TBL] [Abstract][Full Text] [Related]
5. Immunomodulatory effects of CD38-targeting antibodies. van de Donk NWCJ Immunol Lett; 2018 Jul; 199():16-22. PubMed ID: 29702148 [TBL] [Abstract][Full Text] [Related]
7. Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Chini CC; Guerrico AM; Nin V; Camacho-Pereira J; Escande C; Barbosa MT; Chini EN Clin Cancer Res; 2014 Jan; 20(1):120-30. PubMed ID: 24025713 [TBL] [Abstract][Full Text] [Related]
8. Anti-CD38 and anti-SLAMF7: the future of myeloma immunotherapy. Zamagni E; Tacchetti P; Pantani L; Cavo M Expert Rev Hematol; 2018 May; 11(5):423-435. PubMed ID: 29582696 [TBL] [Abstract][Full Text] [Related]
9. SAR442085, a novel anti-CD38 antibody with enhanced antitumor activity against multiple myeloma. Kassem S; Diallo BK; El-Murr N; Carrié N; Tang A; Fournier A; Bonnevaux H; Nicolazzi C; Cuisinier M; Arnould I; Sidhu SS; Corre J; Avet-Loiseau H; Teillaud JL; van de Velde H; Wiederschain D; Chiron M; Martinet L; Virone-Oddos A Blood; 2022 Feb; 139(8):1160-1176. PubMed ID: 35201323 [TBL] [Abstract][Full Text] [Related]
10. Outcomes of anti-CD38 isatuximab plus pomalidomide and dexamethasone in five relapsed myeloma patients with prior exposure to anti-C38 daratumumab: case series. Djebbari F; Poynton M; Sangha G; Anderson L; Maddams R; Eyre TA; Vallance G; Basu S; Ramasamy K Hematology; 2022 Dec; 27(1):204-207. PubMed ID: 35134321 [No Abstract] [Full Text] [Related]
11. CD38 in Adenosinergic Pathways and Metabolic Re-programming in Human Multiple Myeloma Cells: In-tandem Insights From Basic Science to Therapy. Horenstein AL; Bracci C; Morandi F; Malavasi F Front Immunol; 2019; 10():760. PubMed ID: 31068926 [TBL] [Abstract][Full Text] [Related]
12. Targeting CD38 Enhances the Antileukemic Activity of Ibrutinib in Chronic Lymphocytic Leukemia. Manna A; Aulakh S; Jani P; Ahmed S; Akhtar S; Coignet M; Heckman M; Meghji Z; Bhatia K; Sharma A; Sher T; Alegria V; Malavasi F; Chini EN; Chanan-Khan A; Ailawadhi S; Paulus A Clin Cancer Res; 2019 Jul; 25(13):3974-3985. PubMed ID: 30940652 [TBL] [Abstract][Full Text] [Related]
13. Multiple myeloma with t(11;14)-associated immature phenotype has lower CD38 expression and higher BCL2 dependence. Kitadate A; Terao T; Narita K; Ikeda S; Takahashi Y; Tsushima T; Miura D; Takeuchi M; Takahashi N; Matsue K Cancer Sci; 2021 Sep; 112(9):3645-3654. PubMed ID: 34288263 [TBL] [Abstract][Full Text] [Related]
14. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Cea M; Cagnetta A; Fulciniti M; Tai YT; Hideshima T; Chauhan D; Roccaro A; Sacco A; Calimeri T; Cottini F; Jakubikova J; Kong SY; Patrone F; Nencioni A; Gobbi M; Richardson P; Munshi N; Anderson KC Blood; 2012 Oct; 120(17):3519-29. PubMed ID: 22955917 [TBL] [Abstract][Full Text] [Related]
15. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. Grozio A; Sociali G; Sturla L; Caffa I; Soncini D; Salis A; Raffaelli N; De Flora A; Nencioni A; Bruzzone S J Biol Chem; 2013 Sep; 288(36):25938-25949. PubMed ID: 23880765 [TBL] [Abstract][Full Text] [Related]
16. The Anti-CD38 Antibody Therapy in Multiple Myeloma. Petrucci MT; Vozella F Cells; 2019 Dec; 8(12):. PubMed ID: 31842517 [TBL] [Abstract][Full Text] [Related]
17. Sequential CD38 monoclonal antibody retreatment leads to deep remission in a patient with relapsed/refractory multiple myeloma. Steinhardt MJ; Zhou X; Krummenast F; Meckel K; Nickel K; Böckle D; Messerschmidt J; Knorz S; Dierks A; Heidemeier A; Lapa C; Einsele H; Rasche L; Kortüm KM Int J Immunopathol Pharmacol; 2020; 34():2058738420980258. PubMed ID: 33353443 [TBL] [Abstract][Full Text] [Related]
18. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. van de Donk NW; Janmaat ML; Mutis T; Lammerts van Bueren JJ; Ahmadi T; Sasser AK; Lokhorst HM; Parren PW Immunol Rev; 2016 Mar; 270(1):95-112. PubMed ID: 26864107 [TBL] [Abstract][Full Text] [Related]
19. Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma. Feng X; Zhang L; Acharya C; An G; Wen K; Qiu L; Munshi NC; Tai YT; Anderson KC Clin Cancer Res; 2017 Aug; 23(15):4290-4300. PubMed ID: 28249894 [No Abstract] [Full Text] [Related]
20. CD38 antibodies in multiple myeloma: back to the future. van de Donk NWCJ; Richardson PG; Malavasi F Blood; 2018 Jan; 131(1):13-29. PubMed ID: 29118010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]