These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31952818)

  • 1. Automatic segment filtering procedure for processing non-stationary signals.
    Davis DJ; Challis JH
    J Biomech; 2020 Mar; 101():109619. PubMed ID: 31952818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive P-Splines for challenging filtering problems in biomechanics.
    Pohl AJ; Schofield MR; Edwards WB; Ferber R
    J Biomech; 2024 Apr; 167():112074. PubMed ID: 38614021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal digital filtering requires a different cut-off frequency strategy for the determination of the higher derivatives.
    Giakas G; Baltzopoulos V
    J Biomech; 1997 Aug; 30(8):851-5. PubMed ID: 9239572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic algorithm for filtering kinematic signals with impacts in the Wigner representation.
    Georgakis A; Stergioulas LK; Giakas G
    Med Biol Eng Comput; 2002 Nov; 40(6):625-33. PubMed ID: 12507312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of digital filtering on peak acceleration and force measurements for artistic gymnastics skills.
    Campbell RA; Bradshaw EJ; Ball N; Hunter A; Spratford W
    J Sports Sci; 2020 Aug; 38(16):1859-1868. PubMed ID: 32329647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the optimal system-specific cut-off frequencies for filtering in-vitro upper extremity impact force and acceleration data by residual analysis.
    Burkhart TA; Dunning CE; Andrews DM
    J Biomech; 2011 Oct; 44(15):2728-31. PubMed ID: 21903214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of low-pass filter combinations on lower extremity joint moments in distance running.
    Mai P; Willwacher S
    J Biomech; 2019 Oct; 95():109311. PubMed ID: 31451201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertical Ground Reaction Force Estimation From Benchmark Nonstationary Kinematic Data.
    Davis DJ; Challis JH
    J Appl Biomech; 2021 Jun; 37(3):272-276. PubMed ID: 33690167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filtering of kinematic signals using the Hodrick-Prescott filter.
    Alonso FJ; Pintado P; Del Castillo JM
    J Appl Biomech; 2005 Aug; 21(3):271-85. PubMed ID: 16260847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple filter circuit for denoising biomechanical impact signals.
    Subramaniam SR; Georgakis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6938-41. PubMed ID: 19964461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endpoint error in smoothing and differentiating raw kinematic data: an evaluation of four popular methods.
    Vint PF; Hinrichs RN
    J Biomech; 1996 Dec; 29(12):1637-42. PubMed ID: 8945665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved accuracy of biomechanical motion data obtained during impacts using a time-frequency low-pass filter.
    Augustus S; Amca AM; Hudson PE; Smith N
    J Biomech; 2020 Mar; 101():109639. PubMed ID: 31983403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CUDA-based acceleration and BPN-assisted automation of bilateral filtering for brain MR image restoration.
    Chang HH; Chang YN
    Med Phys; 2017 Apr; 44(4):1420-1436. PubMed ID: 28196280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive usage of the Butterworth digital filter.
    Erer KS
    J Biomech; 2007; 40(13):2934-43. PubMed ID: 17442321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rule of 1s for padding kinematic data prior to digital filtering: influence of sampling and filter cutoff frequencies.
    Howarth SJ; Callaghan JP
    J Electromyogr Kinesiol; 2009 Oct; 19(5):875-81. PubMed ID: 18462952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple algorithm for a digital three-pole Butterworth filter of arbitrary cut-off frequency: application to digital electroencephalography.
    Alarcon G; Guy CN; Binnie CD
    J Neurosci Methods; 2000 Dec; 104(1):35-44. PubMed ID: 11163409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving liquid chromatography-tandem mass spectrometry determinations by modifying noise frequency spectrum between two consecutive wavelet-based low-pass filtering procedures.
    Chen HP; Liao HJ; Huang CM; Wang SC; Yu SN
    J Chromatogr A; 2010 Apr; 1217(17):2804-11. PubMed ID: 20227706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-stage motion artefact reduction algorithm for electrocardiogram using weighted adaptive noise cancelling and recursive Hampel filter.
    Ghaleb FA; Kamat MB; Salleh M; Rohani MF; Abd Razak S
    PLoS One; 2018; 13(11):e0207176. PubMed ID: 30457996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and responses of Butterworth and critically damped digital filters.
    Robertson DG; Dowling JJ
    J Electromyogr Kinesiol; 2003 Dec; 13(6):569-73. PubMed ID: 14573371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of cut-off frequency when high-pass filtering equine sEMG signals during locomotion.
    St George L; Hobbs SJ; Richards J; Sinclair J; Holt D; Roy SH
    J Electromyogr Kinesiol; 2018 Dec; 43():28-40. PubMed ID: 30219734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.