BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31953020)

  • 1. Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011-2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models.
    Liu H; Li C; Shao Y; Zhang X; Zhai Z; Wang X; Qi X; Wang J; Hao Y; Wu Q; Jiao M
    J Infect Public Health; 2020 Feb; 13(2):287-294. PubMed ID: 31953020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting the incidence of acute haemorrhagic conjunctivitis in Chongqing: a time series analysis.
    Qiu H; Zeng D; Yi J; Zhu H; Hu L; Jing D; Ye M
    Epidemiol Infect; 2020 Aug; 148():e193. PubMed ID: 32807257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemiological trends and sociodemographic factors associated with acute hemorrhagic conjunctivitis in mainland China from 2004 to 2018.
    Liu R; Chen Y; Liu H; Huang X; Zhou F
    Virol J; 2022 Mar; 19(1):34. PubMed ID: 35232483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan.
    Kuan MM
    PeerJ; 2022; 10():e13117. PubMed ID: 36164599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new hybrid model SARIMA-ETS-SVR for seasonal influenza incidence prediction in mainland China.
    Zhao D; Zhang R
    J Infect Dev Ctries; 2023 Nov; 17(11):1581-1590. PubMed ID: 38064398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model.
    Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J
    BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a combined model with seasonal autoregressive integrated moving average and support vector regression in forecasting hand-foot-mouth disease incidence in Wuhan, China.
    Zou JJ; Jiang GF; Xie XX; Huang J; Yang XB
    Medicine (Baltimore); 2019 Feb; 98(6):e14195. PubMed ID: 30732135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model.
    Mao Q; Zhang K; Yan W; Cheng C
    J Infect Public Health; 2018; 11(5):707-712. PubMed ID: 29730253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq.
    Mohammed SH; Ahmed MM; Al-Mousawi AM; Azeez A
    Int J Mycobacteriol; 2018; 7(4):361-367. PubMed ID: 30531036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting the monthly incidence of scarlet fever in Chongqing, China using the SARIMA model.
    Wu WW; Li Q; Tian DC; Zhao H; Xia Y; Xiong Y; Su K; Tang WG; Chen X; Wang J; Qi L
    Epidemiol Infect; 2022 Apr; 150():e90. PubMed ID: 35543101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting the incidence of mumps in Chongqing based on a SARIMA model.
    Qiu H; Zhao H; Xiang H; Ou R; Yi J; Hu L; Zhu H; Ye M
    BMC Public Health; 2021 Feb; 21(1):373. PubMed ID: 33596871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model.
    Zhang X; Pang Y; Cui M; Stallones L; Xiang H
    Ann Epidemiol; 2015 Feb; 25(2):101-6. PubMed ID: 25467006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of SARIMA model, Holt-winters model and ETS model in predicting the incidence of foodborne disease.
    Xian X; Wang L; Wu X; Tang X; Zhai X; Yu R; Qu L; Ye M
    BMC Infect Dis; 2023 Nov; 23(1):803. PubMed ID: 37974072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hybrid Approach Based on Seasonal Autoregressive Integrated Moving Average and Neural Network Autoregressive Models to Predict Scorpion Sting Incidence in El Oued Province, Algeria, From 2005 to 2020.
    Zenia S; L'Hadj M; Selmane S
    J Res Health Sci; 2023 Sep; 23(3):e00586. PubMed ID: 38315901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time series analysis-based seasonal autoregressive fractionally integrated moving average to estimate hepatitis B and C epidemics in China.
    Wang YB; Qing SY; Liang ZY; Ma C; Bai YC; Xu CJ
    World J Gastroenterol; 2023 Nov; 29(42):5716-5727. PubMed ID: 38075851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular epidemiology of acute hemorrhagic conjunctivitis caused by coxsackie A type 24 variant in China, 2004-2014.
    Zhang L; Zhao N; Huang X; Jin X; Geng X; Chan TC; Liu S
    Sci Rep; 2017 Mar; 7():45202. PubMed ID: 28332617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018.
    Tian CW; Wang H; Luo XM
    Epidemiol Infect; 2019 Jan; 147():e82. PubMed ID: 30868999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SARFIMA model prediction for infectious diseases: application to hemorrhagic fever with renal syndrome and comparing with SARIMA.
    Qi C; Zhang D; Zhu Y; Liu L; Li C; Wang Z; Li X
    BMC Med Res Methodol; 2020 Sep; 20(1):243. PubMed ID: 32993517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach.
    Ye GH; Alim M; Guan P; Huang DS; Zhou BS; Wu W
    PLoS One; 2021; 16(3):e0248597. PubMed ID: 33725011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal analysis and forecasting model of hemorrhagic fever with renal syndrome in mainland China.
    Sun L; Zou LX
    Epidemiol Infect; 2018 Oct; 146(13):1680-1688. PubMed ID: 30078384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.