BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31953204)

  • 1. Expanding the chemical diversity through microorganisms co-culture: Current status and outlook.
    Arora D; Gupta P; Jaglan S; Roullier C; Grovel O; Bertrand S
    Biotechnol Adv; 2020; 40():107521. PubMed ID: 31953204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery.
    Bertrand S; Bohni N; Schnee S; Schumpp O; Gindro K; Wolfender JL
    Biotechnol Adv; 2014 Nov; 32(6):1180-204. PubMed ID: 24651031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Structural Diversity of Marine Microbial Secondary Metabolites Based on Co-Culture Strategy: 2009-2019.
    Chen J; Zhang P; Ye X; Wei B; Emam M; Zhang H; Wang H
    Mar Drugs; 2020 Aug; 18(9):. PubMed ID: 32867339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms.
    Marmann A; Aly AH; Lin W; Wang B; Proksch P
    Mar Drugs; 2014 Feb; 12(2):1043-65. PubMed ID: 24549204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Diverse Bioactive Secondary Metabolites from Marine Microorganisms Using Co-Culture Strategy.
    Li X; Xu H; Li Y; Liao S; Liu Y
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-culture: stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms.
    Peng XY; Wu JT; Shao CL; Li ZY; Chen M; Wang CY
    Mar Life Sci Technol; 2021 Aug; 3(3):363-374. PubMed ID: 37073292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing cross-species co-cultures for discovery of novel natural products.
    Zhuang L; Zhang H
    Curr Opin Biotechnol; 2021 Jun; 69():252-262. PubMed ID: 33647849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms.
    Romano S; Jackson SA; Patry S; Dobson ADW
    Mar Drugs; 2018 Jul; 16(7):. PubMed ID: 30041461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation.
    Wakefield J; Hassan HM; Jaspars M; Ebel R; Rateb ME
    Front Microbiol; 2017; 8():1284. PubMed ID: 28744271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing chemical and biological diversity by co-cultivation.
    Selegato DM; Castro-Gamboa I
    Front Microbiol; 2023; 14():1117559. PubMed ID: 36819067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Efficiency of Cultivation Techniques To Recover Natural Product Biosynthetic Gene Populations from Sediment.
    Elfeki M; Alanjary M; Green SJ; Ziemert N; Murphy BT
    ACS Chem Biol; 2018 Aug; 13(8):2074-2081. PubMed ID: 29932624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-culture-inducible bacteriocin production in lactic acid bacteria.
    Chanos P; Mygind T
    Appl Microbiol Biotechnol; 2016 May; 100(10):4297-308. PubMed ID: 27037694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innovative omics-based approaches for prioritisation and targeted isolation of natural products - new strategies for drug discovery.
    Wolfender JL; Litaudon M; Touboul D; Queiroz EF
    Nat Prod Rep; 2019 Jun; 36(6):855-868. PubMed ID: 31073562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic discovery: combining isolation chip (iChip) technology and co-culture technique.
    Lodhi AF; Zhang Y; Adil M; Deng Y
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7333-7341. PubMed ID: 29974183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrospective analysis of natural products provides insights for future discovery trends.
    Pye CR; Bertin MJ; Lokey RS; Gerwick WH; Linington RG
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5601-5606. PubMed ID: 28461474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal-fungal co-culture: a primer for generating chemical diversity.
    Knowles SL; Raja HA; Roberts CD; Oberlies NH
    Nat Prod Rep; 2022 Aug; 39(8):1557-1573. PubMed ID: 35137758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upregulation and Identification of Antibiotic Activity of a Marine-Derived Streptomyces sp. via Co-Cultures with Human Pathogens.
    Sung AA; Gromek SM; Balunas MJ
    Mar Drugs; 2017 Aug; 15(8):. PubMed ID: 28800088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of bacterial co-cultures for the efficient production of chemicals.
    Jones JA; Wang X
    Curr Opin Biotechnol; 2018 Oct; 53():33-38. PubMed ID: 29207331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes.
    LautiƩ E; Russo O; Ducrot P; Boutin JA
    Front Pharmacol; 2020; 11():397. PubMed ID: 32317969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confronting the challenges of natural product-based antifungal discovery.
    Roemer T; Xu D; Singh SB; Parish CA; Harris G; Wang H; Davies JE; Bills GF
    Chem Biol; 2011 Feb; 18(2):148-64. PubMed ID: 21338914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.