These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31953367)

  • 1. A cerebellum-like circuit in the lateral line system of fish cancels mechanosensory input associated with its own movements.
    Perks KE; Krotinger A; Bodznick D
    J Exp Biol; 2020 Feb; 223(Pt 4):. PubMed ID: 31953367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity in a cerebellar-like structure: suppressing reafference during episodic behaviors.
    Zhang Z; Bodznick D
    J Exp Biol; 2008 Dec; 211(Pt 23):3720-8. PubMed ID: 19011212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple behavior-specific cancellation signals contribute to suppressing predictable sensory reafference in a cerebellum-like structure.
    Lai NY; Bell JM; Bodznick D
    J Exp Biol; 2021 Apr; 224(7):. PubMed ID: 33653722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformations of electrosensory encoding associated with an adaptive filter.
    Sawtell NB; Williams A
    J Neurosci; 2008 Feb; 28(7):1598-612. PubMed ID: 18272681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Mechanisms for Predicting the Sensory Consequences of Behavior: Insights from Electrosensory Systems.
    Sawtell NB
    Annu Rev Physiol; 2017 Feb; 79():381-399. PubMed ID: 27813831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit.
    Sawtell NB
    Neuron; 2010 May; 66(4):573-84. PubMed ID: 20510861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellum-like structures and their implications for cerebellar function.
    Bell CC; Han V; Sawtell NB
    Annu Rev Neurosci; 2008; 31():1-24. PubMed ID: 18275284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive processing in electrosensory systems: links to cerebellar plasticity and learning.
    Sawtell NB; Bell CC
    J Physiol Paris; 2008; 102(4-6):223-32. PubMed ID: 18984048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design principles of sensory processing in cerebellum-like structures. Early stage processing of electrosensory and auditory objects.
    Roberts PD; Portfors CV
    Biol Cybern; 2008 Jun; 98(6):491-507. PubMed ID: 18491162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corollary discharge enables proprioception from lateral line sensory feedback.
    Skandalis DA; Lunsford ET; Liao JC
    PLoS Biol; 2021 Oct; 19(10):e3001420. PubMed ID: 34634044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The generation and subtraction of sensory expectations within cerebellum-like structures.
    Bell C; Bodznick D; Montgomery J; Bastian J
    Brain Behav Evol; 1997; 50 Suppl 1():17-31. PubMed ID: 9217991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive mechanisms in the elasmobranch hindbrain.
    Bodznick D; Montgomery JC; Carey M
    J Exp Biol; 1999 May; 202(# (Pt 10)):1357-64. PubMed ID: 10210676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor corollary discharge activity and sensory responses related to ventilation in the skate vestibulolateral cerebellum: implications for electrosensory processing.
    Hjelmstad G; Parks G; Bodznick D
    J Exp Biol; 1996; 199(Pt 3):673-81. PubMed ID: 9318412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic corollary discharge predicts sensory consequences of movements in a cerebellum-like circuit.
    Requarth T; Sawtell NB
    Neuron; 2014 May; 82(4):896-907. PubMed ID: 24853945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internally Generated Predictions Enhance Neural and Behavioral Detection of Sensory Stimuli in an Electric Fish.
    Enikolopov AG; Abbott LF; Sawtell NB
    Neuron; 2018 Jul; 99(1):135-146.e3. PubMed ID: 30001507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural simulations of adaptive reafference suppression in the elasmobranch electrosensory system.
    Nelson ME; Paulin MG
    J Comp Physiol A; 1995 Dec; 177(6):723-36. PubMed ID: 8537939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish.
    Finger TE; Tong SL
    J Comp Neurol; 1984 Oct; 229(1):129-51. PubMed ID: 6490974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Afferent and efferent connections of the vestibulolateral cerebellum of the little skate, Raja erinacea.
    Schmidt AW; Bodznick D
    Brain Behav Evol; 1987; 30(5-6):282-302. PubMed ID: 3427408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efferent modulation of spontaneous lateral line activity during and after zebrafish motor commands.
    Lunsford ET; Skandalis DA; Liao JC
    J Neurophysiol; 2019 Dec; 122(6):2438-2448. PubMed ID: 31642405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.