These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31953397)

  • 1. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator.
    Lucas E; Brochard P; Bouchand R; Schilt S; Südmeyer T; Kippenberg TJ
    Nat Commun; 2020 Jan; 11(1):374. PubMed ID: 31953397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brillouin-Kerr Soliton Frequency Combs in an Optical Microresonator.
    Bai Y; Zhang M; Shi Q; Ding S; Qin Y; Xie Z; Jiang X; Xiao M
    Phys Rev Lett; 2021 Feb; 126(6):063901. PubMed ID: 33635694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-low time jitter transform-limited dissipative Kerr soliton microcomb.
    Cui W; Liu X; Zhou H; Wang W; Qiu K; Geng Y
    Opt Express; 2023 Oct; 31(22):37154-37161. PubMed ID: 38017850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency division using a soliton-injected semiconductor gain-switched frequency comb.
    Weng W; Kaszubowska-Anandarajah A; Liu J; Anandarajah PM; Kippenberg TJ
    Sci Adv; 2020 Sep; 6(39):. PubMed ID: 32978157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-phase-noise microwave generation with a free-running dual-pumped Si
    Liu R; Zhang C; Li Y; Li X; Lin J; He B; Chen Z; Xie X
    Opt Lett; 2024 Feb; 49(3):754-757. PubMed ID: 38300107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs.
    Kwon D; Jeong D; Jeon I; Lee H; Kim J
    Nat Commun; 2022 Jan; 13(1):381. PubMed ID: 35046409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz wave generation using a soliton microcomb.
    Zhang S; Silver JM; Shang X; Del Bino L; Ridler NM; Del'Haye P
    Opt Express; 2019 Nov; 27(24):35257-35266. PubMed ID: 31878698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase noise of Kerr soliton dual microcombs.
    Geng Y; Han X; Zhang X; Xiao Y; Qian S; Bai Q; Fan Y; Deng G; Zhou Q; Qiu K; Xu J; Zhou H
    Opt Lett; 2022 Sep; 47(18):4838-4841. PubMed ID: 36107103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic chip-based low-noise microwave oscillator.
    Kudelin I; Groman W; Ji QX; Guo J; Kelleher ML; Lee D; Nakamura T; McLemore CA; Shirmohammadi P; Hanifi S; Cheng H; Jin N; Wu L; Halladay S; Luo Y; Dai Z; Jin W; Bai J; Liu Y; Zhang W; Xiang C; Chang L; Iltchenko V; Miller O; Matsko A; Bowers SM; Rakich PT; Campbell JC; Bowers JE; Vahala KJ; Quinlan F; Diddams SA
    Nature; 2024 Mar; 627(8004):534-539. PubMed ID: 38448599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-referenced photonic chip soliton Kerr frequency comb.
    Brasch V; Lucas E; Jost JD; Geiselmann M; Kippenberg TJ
    Light Sci Appl; 2017 Jan; 6(1):e16202. PubMed ID: 30167198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed tunable microwave-rate soliton microcomb.
    He Y; Lopez-Rios R; Javid UA; Ling J; Li M; Xue S; Vahala K; Lin Q
    Nat Commun; 2023 Jun; 14(1):3467. PubMed ID: 37308507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-low noise microwave generation with a free-running optical frequency comb transfer oscillator.
    Brochard P; Schilt S; Südmeyer T
    Opt Lett; 2018 Oct; 43(19):4651-4654. PubMed ID: 30272706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz.
    Huang SW; Yang J; Lim J; Zhou H; Yu M; Kwong DL; Wong CW
    Sci Rep; 2015 Aug; 5():13355. PubMed ID: 26311406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs.
    Li J; Lee H; Chen T; Vahala KJ
    Phys Rev Lett; 2012 Dec; 109(23):233901. PubMed ID: 23368202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Kerr frequency comb atomic spectroscopy and stabilization.
    Stern L; Stone JR; Kang S; Cole DC; Suh MG; Fredrick C; Newman Z; Vahala K; Kitching J; Diddams SA; Papp SB
    Sci Adv; 2020 Feb; 6(9):eaax6230. PubMed ID: 32158936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-optical frequency division on-chip using a single laser.
    Zhao Y; Jang JK; Beals GJ; McNulty KJ; Ji X; Okawachi Y; Lipson M; Gaeta AL
    Nature; 2024 Mar; 627(8004):546-552. PubMed ID: 38467896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-noise and broadband optical frequency comb generation based on an optoelectronic oscillator.
    Xie X; Sun T; Peng H; Zhang C; Guo P; Zhu L; Hu W; Chen Z
    Opt Lett; 2014 Feb; 39(4):785-8. PubMed ID: 24562206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-Band photonic microwaves with phase noise below -180 dBc/Hz using a free-running monolithic comb.
    Kalubovilage M; Endo M; Schibli TR
    Opt Express; 2022 Mar; 30(7):11266-11274. PubMed ID: 35473074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration.
    Yu N; Salik E; Maleki L
    Opt Lett; 2005 May; 30(10):1231-3. PubMed ID: 15943318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider.
    Quinlan F; Fortier TM; Kirchner MS; Taylor JA; Thorpe MJ; Lemke N; Ludlow AD; Jiang Y; Diddams SA
    Opt Lett; 2011 Aug; 36(16):3260-2. PubMed ID: 21847227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.