These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31953407)

  • 1. Polypeptide templating for designer hierarchical materials.
    Sun H; Marelli B
    Nat Commun; 2020 Jan; 11(1):351. PubMed ID: 31953407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures.
    Tseng P; Napier B; Zhao S; Mitropoulos AN; Applegate MB; Marelli B; Kaplan DL; Omenetto FG
    Nat Nanotechnol; 2017 May; 12(5):474-480. PubMed ID: 28250472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process.
    Bai S; Liu S; Zhang C; Xu W; Lu Q; Han H; Kaplan DL; Zhu H
    Acta Biomater; 2013 Aug; 9(8):7806-13. PubMed ID: 23628774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling microstructure of three-dimensional scaffolds from regenerated silk fibroin by adjusting pH.
    Cho SY; Heo S; Jin HJ
    J Nanosci Nanotechnol; 2012 Jan; 12(1):806-10. PubMed ID: 22524061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures.
    Qi Y; Wang H; Wei K; Yang Y; Zheng RY; Kim IS; Zhang KQ
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28273799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of self-assembly regenerated silk fibroin nanofibers on the properties of electrospun materials.
    Zhao H; Ren X; Zhang Y; Huang L
    Biomed Mater Eng; 2015; 26 Suppl 1():S89-94. PubMed ID: 26406088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Characterization of Reconstituted Silk Microgels for the Storage and Release of Small Molecules.
    Liu X; Toprakcioglu Z; Dear AJ; Levin A; Ruggeri FS; Taylor CG; Hu M; Kumita JR; Andreasen M; Dobson CM; Shimanovich U; Knowles TPJ
    Macromol Rapid Commun; 2019 Apr; 40(8):e1800898. PubMed ID: 30840348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces.
    Wang Y; Kim BJ; Peng B; Li W; Wang Y; Li M; Omenetto FG
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21361-21368. PubMed ID: 31591247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Structure of Silk Materials Versus Mechanical Performance and Mesoscopic Engineering Principles.
    Qiu W; Patil A; Hu F; Liu XY
    Small; 2019 Dec; 15(51):e1903948. PubMed ID: 31657136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants.
    Costa JB; Silva-Correia J; Oliveira JM; Reis RL
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 29106065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance.
    Nguyen AT; Huang QL; Yang Z; Lin N; Xu G; Liu XY
    Small; 2015 Mar; 11(9-10):1039-54. PubMed ID: 25510895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold.
    Hong Y; Zhu X; Wang P; Fu H; Deng C; Cui L; Wang Q; Fan X
    Appl Biochem Biotechnol; 2016 Apr; 178(7):1363-76. PubMed ID: 26679706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing of Hierarchical Silk Fibroin Structures.
    Sommer MR; Schaffner M; Carnelli D; Studart AR
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34677-34685. PubMed ID: 27933765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral analysis of induced color change on periodically nanopatterned silk films.
    Amsden JJ; Perry H; Boriskina SV; Gopinath A; Kaplan DL; Dal Negro L; Omenetto FG
    Opt Express; 2009 Nov; 17(23):21271-9. PubMed ID: 19997366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver nanoparticles incorporated electrospun silk fibers.
    Kang M; Jung R; Kim HS; Youk JH; Jin HJ
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3888-91. PubMed ID: 18047081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications.
    Zhang H; Liu X; Yang M; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():8-13. PubMed ID: 26117733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials.
    Dong X; Zhao Q; Xiao L; Lu Q; Kaplan DL
    Biomacromolecules; 2016 Sep; 17(9):3000-6. PubMed ID: 27476755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofunctionalized silk fibroin nanofibers for directional and long neurite outgrowth.
    Li X; Zhang Q; Luo Z; Yan S; You R
    Biointerphases; 2019 Nov; 14(6):061001. PubMed ID: 31731836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.