These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31953515)

  • 1. Brain mechanisms in motor control during reaching movements: Transition of functional connectivity according to movement states.
    Yeom HG; Kim JS; Chung CK
    Sci Rep; 2020 Jan; 10(1):567. PubMed ID: 31953515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedforward and feedback processes in motor control.
    Seidler RD; Noll DC; Thiers G
    Neuroimage; 2004 Aug; 22(4):1775-83. PubMed ID: 15275933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortex, basal ganglia and cerebellum in motor control.
    Kornhuber HH
    Electroencephalogr Clin Neurophysiol Suppl; 1978; (34):449-55. PubMed ID: 108082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies.
    Jueptner M; Weiller C
    Brain; 1998 Aug; 121 ( Pt 8)():1437-49. PubMed ID: 9712006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor control in basal ganglia circuits using fMRI and brain atlas approaches.
    Lehéricy S; Bardinet E; Tremblay L; Van de Moortele PF; Pochon JB; Dormont D; Kim DS; Yelnik J; Ugurbil K
    Cereb Cortex; 2006 Feb; 16(2):149-61. PubMed ID: 15858164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the velocity and trajectory of three-dimensional reaching movements from non-invasive magnetoencephalography signals.
    Yeom HG; Kim JS; Chung CK
    J Neural Eng; 2013 Apr; 10(2):026006. PubMed ID: 23428826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks.
    Brovelli A; Badier JM; Bonini F; Bartolomei F; Coulon O; Auzias G
    J Neurosci; 2017 Jan; 37(4):839-853. PubMed ID: 28123020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson's disease patients and controls during predictive motor timing.
    Husárová I; Mikl M; Lungu OV; Mareček R; Vaníček J; Bareš M
    J Neuroimaging; 2013 Oct; 23(4):452-62. PubMed ID: 23701268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related alterations of the functional interactions within the basal ganglia and cerebellar motor loops in vivo.
    Taniwaki T; Okayama A; Yoshiura T; Togao O; Nakamura Y; Yamasaki T; Ogata K; Shigeto H; Ohyagi Y; Kira J; Tobimatsu S
    Neuroimage; 2007 Jul; 36(4):1263-76. PubMed ID: 17524667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain structures related to active and passive finger movements in man.
    Mima T; Sadato N; Yazawa S; Hanakawa T; Fukuyama H; Yonekura Y; Shibasaki H
    Brain; 1999 Oct; 122 ( Pt 10)():1989-97. PubMed ID: 10506099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Difference of Neural Networks between Bimanual Antiphase and In-Phase Upper Limb Movements: A Preliminary Functional Magnetic Resonance Imaging Study.
    Lin Q; Li H; Mao YR; Lo WL; Zhao JL; Chen L; Leng Y; Huang DF; Li L
    Behav Neurol; 2017; 2017():8041962. PubMed ID: 28701822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary motor cortex and cerebellum are coupled with the kinematics of observed hand movements.
    Bourguignon M; De Tiège X; de Beeck MO; Van Bogaert P; Goldman S; Jousmäki V; Hari R
    Neuroimage; 2013 Feb; 66():500-7. PubMed ID: 23108269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The initiation of voluntary movements by the supplementary motor area.
    Eccles JC
    Arch Psychiatr Nervenkr (1970); 1982; 231(5):423-41. PubMed ID: 6812546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction.
    Boecker H; Ceballos-Baumann AO; Bartenstein P; Dagher A; Forster K; Haslinger B; Brooks DJ; Schwaiger M; Conrad B
    Neuroimage; 2002 Oct; 17(2):999-1009. PubMed ID: 12377173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning.
    Sidarta A; Vahdat S; Bernardi NF; Ostry DJ
    J Neurosci; 2016 Nov; 36(46):11682-11692. PubMed ID: 27852776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neural correlates of perceiving one's own movements.
    Leube DT; Knoblich G; Erb M; Grodd W; Bartels M; Kircher TT
    Neuroimage; 2003 Dec; 20(4):2084-90. PubMed ID: 14683712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Movement errors during skilled motor performance engage distinct prediction error mechanisms.
    Gabitov E; Lungu O; Albouy G; Doyon J
    Commun Biol; 2020 Dec; 3(1):763. PubMed ID: 33311566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-trial prediction of reaction time variability from MEG brain activity.
    Ohata R; Ogawa K; Imamizu H
    Sci Rep; 2016 Jun; 6():27416. PubMed ID: 27250872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontoparietal cortex and cerebellum contribution to the update of actual and mental motor performance during the day.
    Bonzano L; Roccatagliata L; Ruggeri P; Papaxanthis C; Bove M
    Sci Rep; 2016 Jul; 6():30126. PubMed ID: 27444783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced recruitment of motor association areas during bimanual coordination in concert pianists.
    Haslinger B; Erhard P; Altenmüller E; Hennenlotter A; Schwaiger M; Gräfin von Einsiedel H; Rummeny E; Conrad B; Ceballos-Baumann AO
    Hum Brain Mapp; 2004 Jul; 22(3):206-15. PubMed ID: 15195287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.