These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3195364)

  • 1. The distribution of podosomes in osteoclasts cultured on bone laminae: effect of retinol.
    Zambonin-Zallone A; Teti A; Carano A; Marchisio PC
    J Bone Miner Res; 1988 Oct; 3(5):517-23. PubMed ID: 3195364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast.
    Akisaka T; Yoshida H; Inoue S; Shimizu K
    J Bone Miner Res; 2001 Jul; 16(7):1248-55. PubMed ID: 11450700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of vitamin A on bone resorption: evidence for direct stimulation of isolated chicken osteoclasts by retinol and retinoic acid.
    Oreffo RO; Teti A; Triffitt JT; Francis MJ; Carano A; Zallone AZ
    J Bone Miner Res; 1988 Apr; 3(2):203-10. PubMed ID: 3063069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro.
    Lakkakorpi PT; Väänänen HK
    J Bone Miner Res; 1991 Aug; 6(8):817-26. PubMed ID: 1664645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane.
    Akisaka T; Yoshida H; Suzuki R
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture.
    Akisaka T; Yoshida H; Suzuki R; Takama K
    Cell Tissue Res; 2008 Mar; 331(3):625-41. PubMed ID: 18087726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunolocalization of beta 3 subunit of integrins in osteoclast membrane.
    Teti A; Grano M; Carano A; Colucci S; Zambonin Zallone A
    Boll Soc Ital Biol Sper; 1989 Nov; 65(11):1031-7. PubMed ID: 2629822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Podosome and sealing zone: specificity of the osteoclast model.
    Jurdic P; Saltel F; Chabadel A; Destaing O
    Eur J Cell Biol; 2006 Apr; 85(3-4):195-202. PubMed ID: 16546562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular dynamics of osteoclast adhesions.
    Luxenburg C; Addadi L; Geiger B
    Eur J Cell Biol; 2006 Apr; 85(3-4):203-11. PubMed ID: 16360241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the Src-cortactin pathway in podosome formation and turnover during polarization of cultured osteoclasts.
    Luxenburg C; Parsons JT; Addadi L; Geiger B
    J Cell Sci; 2006 Dec; 119(Pt 23):4878-88. PubMed ID: 17105771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different calcium sensitivity in osteoclasts on glass and on bone and maintenance of cytoskeletal structures on bone in the presence of high extracellular calcium.
    Lakkakorpi PT; Lehenkari PP; Rautiala TJ; Väänänen HK
    J Cell Physiol; 1996 Sep; 168(3):668-77. PubMed ID: 8816921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoskeletal changes in osteoclasts during the resorption cycle.
    Lakkakorpi PT; Väänänen HK
    Microsc Res Tech; 1996 Feb; 33(2):171-81. PubMed ID: 8845516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of osteoclast microfilaments during the attachment to bone surface in vitro.
    Lakkakorpi P; Tuukkanen J; Hentunen T; Järvelin K; Väänänen K
    J Bone Miner Res; 1989 Dec; 4(6):817-25. PubMed ID: 2692403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation.
    Saltel F; Chabadel A; Bonnelye E; Jurdic P
    Eur J Cell Biol; 2008 Sep; 87(8-9):459-68. PubMed ID: 18294724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoclasts and monocytes have similar cytoskeletal structures and adhesion property in vitro.
    Zallone AZ; Teti A; Primavera MV; Naldini L; Marchisio PC
    J Anat; 1983 Aug; 137 (Pt 1)(Pt 1):57-70. PubMed ID: 6355036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fimbrin in podosomes of monocyte-derived osteoclasts.
    Babb SG; Matsudaira P; Sato M; Correia I; Lim SS
    Cell Motil Cytoskeleton; 1997; 37(4):308-25. PubMed ID: 9258504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural analysis of apatite-degrading capability of extended invasive podosomes in resorbing osteoclasts.
    Akisaka T; Yoshida A
    Micron; 2016 Sep; 88():37-47. PubMed ID: 27323283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly.
    Luxenburg C; Geblinger D; Klein E; Anderson K; Hanein D; Geiger B; Addadi L
    PLoS One; 2007 Jan; 2(1):e179. PubMed ID: 17264882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rho GTPases in osteoclasts: orchestrators of podosome arrangement.
    Ory S; Brazier H; Pawlak G; Blangy A
    Eur J Cell Biol; 2008 Sep; 87(8-9):469-77. PubMed ID: 18436334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion patterns and cytoskeleton of rabbit osteoclasts on bone slices and glass.
    Turksen K; Kanehisa J; Opas M; Heersche JN; Aubin JE
    J Bone Miner Res; 1988 Aug; 3(4):389-400. PubMed ID: 3223354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.