These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 31954270)
21. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Yan J; Sharo AG; Stone HA; Wingreen NS; Bassler BL Proc Natl Acad Sci U S A; 2016 Sep; 113(36):E5337-43. PubMed ID: 27555592 [TBL] [Abstract][Full Text] [Related]
22. Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation. Uhlich GA; Rogers DP; Mosier DA Foodborne Pathog Dis; 2010 Aug; 7(8):935-43. PubMed ID: 20367070 [TBL] [Abstract][Full Text] [Related]
23. Role of Flagellin-Homologous Proteins in Biofilm Formation by Pathogenic Jung YC; Lee MA; Lee KH mBio; 2019 Aug; 10(4):. PubMed ID: 31409687 [TBL] [Abstract][Full Text] [Related]
24. Anti-biofilm Properties of the Fecal Probiotic Lactobacilli Against Kaur S; Sharma P; Kalia N; Singh J; Kaur S Front Cell Infect Microbiol; 2018; 8():120. PubMed ID: 29740541 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of Phosphoethanolamine Cellulose Production among Bacterial Communities Using Congo Red Fluorescence. Thongsomboon W; Werby SH; Cegelski L J Bacteriol; 2020 Jun; 202(13):. PubMed ID: 32312746 [TBL] [Abstract][Full Text] [Related]
26. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Tamayo R; Patimalla B; Camilli A Infect Immun; 2010 Aug; 78(8):3560-9. PubMed ID: 20515927 [TBL] [Abstract][Full Text] [Related]
27. Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities. Kapfhammer D; Karatan E; Pflughoeft KJ; Watnick PI Appl Environ Microbiol; 2005 Jul; 71(7):3840-7. PubMed ID: 16000796 [TBL] [Abstract][Full Text] [Related]
28. Spermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways. McGinnis MW; Parker ZM; Walter NE; Rutkovsky AC; Cartaya-Marin C; Karatan E FEMS Microbiol Lett; 2009 Oct; 299(2):166-74. PubMed ID: 19694812 [TBL] [Abstract][Full Text] [Related]
32. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. Karatan E; Duncan TR; Watnick PI J Bacteriol; 2005 Nov; 187(21):7434-43. PubMed ID: 16237027 [TBL] [Abstract][Full Text] [Related]
33. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Moorthy S; Watnick PI Mol Microbiol; 2005 Sep; 57(6):1623-35. PubMed ID: 16135229 [TBL] [Abstract][Full Text] [Related]
34. Mechanical instability and interfacial energy drive biofilm morphogenesis. Yan J; Fei C; Mao S; Moreau A; Wingreen NS; Košmrlj A; Stone HA; Bassler BL Elife; 2019 Mar; 8():. PubMed ID: 30848725 [TBL] [Abstract][Full Text] [Related]
35. Pellicle formation by Escherichia coli K-12: Role of adhesins and motility. Golub SR; Overton TW J Biosci Bioeng; 2021 Apr; 131(4):381-389. PubMed ID: 33495047 [TBL] [Abstract][Full Text] [Related]
36. Vibrio cholerae biofilm scaffolding protein RbmA shows an intrinsic, phosphate-dependent autoproteolysis activity. Maestre-Reyna M; Huang WC; Wu WJ; Singh PK; Hartmann R; Wang PH; Lee CC; Hikima T; Yamamoto M; Bessho Y; Drescher K; Tsai MD; Wang AH IUBMB Life; 2021 Feb; 73(2):418-431. PubMed ID: 33372380 [TBL] [Abstract][Full Text] [Related]
37. Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces. Zhang Z; Christopher G Langmuir; 2016 Mar; 32(11):2724-30. PubMed ID: 26943272 [TBL] [Abstract][Full Text] [Related]
38. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Drescher K; Dunkel J; Nadell CD; van Teeffelen S; Grnja I; Wingreen NS; Stone HA; Bassler BL Proc Natl Acad Sci U S A; 2016 Apr; 113(14):E2066-72. PubMed ID: 26933214 [TBL] [Abstract][Full Text] [Related]