These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31954405)

  • 21. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes.
    Zhou X; Zhang J; Khashi U Rahman M; Gao D; Wei Z; Wu F; Dini-Andreote F
    Mol Plant; 2023 May; 16(5):849-864. PubMed ID: 36935607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease.
    Zhou Y; Yang Z; Liu J; Li X; Wang X; Dai C; Zhang T; Carrión VJ; Wei Z; Cao F; Delgado-Baquerizo M; Li X
    Nat Commun; 2023 Dec; 14(1):8126. PubMed ID: 38065941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of plant development on the rhizobacterial population of Arachis hypogaea: a multifactorial analysis.
    Haldar S; Sengupta S
    J Basic Microbiol; 2015 Jul; 55(7):922-8. PubMed ID: 25572408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hormones as go-betweens in plant microbiome assembly.
    Eichmann R; Richards L; Schäfer P
    Plant J; 2021 Jan; 105(2):518-541. PubMed ID: 33332645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.).
    Xu Y; Zhang G; Ding H; Ci D; Dai L; Zhang Z
    Int Microbiol; 2020 Aug; 23(3):453-465. PubMed ID: 31933013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.
    Liu J; Wang X; Zhang T; Li X
    Microbiol Res; 2017 Dec; 205():118-124. PubMed ID: 28942837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The resistance of peanut to soil-borne pathogens improved by rhizosphere probiotics under calcium treatment.
    Zhang W; Zhang BW; Deng JF; Li L; Yi TY; Hong YY
    BMC Microbiol; 2021 Oct; 21(1):299. PubMed ID: 34715786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Achieving similar root microbiota composition in neighbouring plants through airborne signalling.
    Kong HG; Song GC; Sim HJ; Ryu CM
    ISME J; 2021 Feb; 15(2):397-408. PubMed ID: 32973341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short-term continuous monocropping reduces peanut yield mainly via altering soil enzyme activity and fungal community.
    Yu T; Hou X; Fang X; Razavi B; Zang H; Zeng Z; Yang Y
    Environ Res; 2024 Mar; 245():117977. PubMed ID: 38141923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly.
    Liu F; Hewezi T; Lebeis SL; Pantalone V; Grewal PS; Staton ME
    BMC Microbiol; 2019 Sep; 19(1):201. PubMed ID: 31477026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems.
    Li P; Liu J; Saleem M; Li G; Luan L; Wu M; Li Z
    Microbiome; 2022 Jul; 10(1):108. PubMed ID: 35841078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological and metagenomic strategies uncover the rhizosphere bacterial microbiome succession underlying three common environmental stresses in cassava.
    Zeng H; Xu H; Liu G; Wei Y; Zhang J; Shi H
    J Hazard Mater; 2021 Jun; 411():125143. PubMed ID: 33858103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava.
    Ren MY; Feng RJ; Shi HR; Lu LF; Yun TY; Peng M; Guan X; Zhang H; Wang JY; Zhang XY; Li CL; Chen YJ; He P; Zhang YD; Xie JH
    PLoS One; 2017; 12(5):e0177621. PubMed ID: 28542282
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Sun J; Li S; Fan C; Cui K; Tan H; Qiao L; Lu L
    Microbiol Spectr; 2022 Jun; 10(3):e0035822. PubMed ID: 35665438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inheritance of seed and rhizosphere microbial communities through plant-soil feedback and soil memory.
    Kong HG; Song GC; Ryu CM
    Environ Microbiol Rep; 2019 Aug; 11(4):479-486. PubMed ID: 31054200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of maize/peanut intercropping effects on microbial assembly, root exudates and peanut nitrogen uptake.
    Jiang Y; Khan MU; Lin X; Lin Z; Lin S; Lin W
    Plant Physiol Biochem; 2022 Jan; 171():75-83. PubMed ID: 34973502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Community Assembly of Fungi and Bacteria along Soil-Plant Continuum Differs in a Zoige Wetland.
    Li J; Liu YX; Lü PP; Wang YL; Li ZF; Zhang Y; Gan HY; Li XC; Mandal D; Cai J; Guo ZX; Yao H; Guo LD
    Microbiol Spectr; 2022 Oct; 10(5):e0226022. PubMed ID: 36135597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural development and assembly patterns of the root-associated microbiomes during phytoremediation.
    Chen Y; Ding Q; Chao Y; Wei X; Wang S; Qiu R
    Sci Total Environ; 2018 Dec; 644():1591-1601. PubMed ID: 30743871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.
    Yang Z; Yang W; Li S; Hao J; Su Z; Sun M; Gao Z; Zhang C
    PLoS One; 2016; 11(3):e0150618. PubMed ID: 26934044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial Community Changes in the Rhizosphere Soil of Healthy and Rusty
    Wei X; Wang X; Cao P; Gao Z; Chen AJ; Han J
    Biomed Res Int; 2020; 2020():8018525. PubMed ID: 32016120
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.