BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 31954716)

  • 1. Pathway analysis of glutamate-mediated, calcium-related signaling in glioma progression.
    Pei Z; Lee KC; Khan A; Erisnor G; Wang HY
    Biochem Pharmacol; 2020 Jun; 176():113814. PubMed ID: 31954716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy.
    Lange F; Hörnschemeyer J; Kirschstein T
    Cells; 2021 May; 10(5):. PubMed ID: 34067762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting nitric oxide and NMDA receptor-associated pathways in treatment of high grade glial tumors. Hypotheses for nitro-memantine and nitrones.
    Altinoz MA; Elmaci İ
    Nitric Oxide; 2018 Sep; 79():68-83. PubMed ID: 29030124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autocrine glutamate signaling promotes glioma cell invasion.
    Lyons SA; Chung WJ; Weaver AK; Ogunrinu T; Sontheimer H
    Cancer Res; 2007 Oct; 67(19):9463-71. PubMed ID: 17909056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuated AMPA receptor expression allows glioblastoma cell survival in glutamate-rich environment.
    van Vuurden DG; Yazdani M; Bosma I; Broekhuizen AJ; Postma TJ; Heimans JJ; van der Valk P; Aronica E; Tannous BA; Würdinger T; Kaspers GJ; Cloos J
    PLoS One; 2009 Jun; 4(6):e5953. PubMed ID: 19536293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered glutamatergic and inflammatory pathways promote glioblastoma growth, invasion, and seizures: An overview.
    Feyissa AM; Rosenfeld SS; Quiñones-Hinojosa A
    J Neurol Sci; 2022 Dec; 443():120488. PubMed ID: 36368135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic N-methyl-D-aspartate receptor activation inhibits neurotransmitter release through nitric oxide formation in rat hippocampal nerve terminals.
    Sequeira SM; Malva JO; Carvalho AP; Carvalho CM
    Brain Res Mol Brain Res; 2001 Apr; 89(1-2):111-8. PubMed ID: 11311981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation-transcription coupling via calcium/calmodulin-dependent protein kinase/ERK1/2 signaling mediates the coordinate induction of VGLUT2 and Narp triggered by a prolonged increase in glutamatergic synaptic activity.
    Doyle S; Pyndiah S; De Gois S; Erickson JD
    J Biol Chem; 2010 May; 285(19):14366-76. PubMed ID: 20212045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GL261 glioma tumor cells respond to ATP with an intracellular calcium rise and glutamate release.
    Strong AD; Indart MC; Hill NR; Daniels RL
    Mol Cell Biochem; 2018 Sep; 446(1-2):53-62. PubMed ID: 29318454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices.
    Frade JG; Barbosa RM; Laranjinha J
    Hippocampus; 2009 Jul; 19(7):603-11. PubMed ID: 19115375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal growth factor receptor promotes glioma progression by regulating xCT and GluN2B-containing N-methyl-d-aspartate-sensitive glutamate receptor signaling.
    Suina K; Tsuchihashi K; Yamasaki J; Kamenori S; Shintani S; Hirata Y; Okazaki S; Sampetrean O; Baba E; Akashi K; Mitsuishi Y; Takahashi F; Takahashi K; Saya H; Nagano O
    Cancer Sci; 2018 Dec; 109(12):3874-3882. PubMed ID: 30298963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissection of mitogenic and neurodegenerative actions of cystine and glutamate in malignant gliomas.
    Savaskan NE; Seufert S; Hauke J; Tränkle C; Eyüpoglu IY; Hahnen E
    Oncogene; 2011 Jan; 30(1):43-53. PubMed ID: 20802520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of calcium-permeable glutamate receptors in glioblastoma derived brain tumor initiating cells.
    Oh MC; Kim JM; Safaee M; Kaur G; Sun MZ; Kaur R; Celli A; Mauro TM; Parsa AT
    PLoS One; 2012; 7(10):e47846. PubMed ID: 23110111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional modulation of calcium-permeable AMPA receptor subunits in glioblastoma by MEK-ERK1/2 inhibitors and their role in invasion.
    Ramaswamy P; Dalavaikodihalli Nanjaiah N; Prasad C; Goswami K
    Cell Biol Int; 2020 Mar; 44(3):830-837. PubMed ID: 31814223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate Receptors and Glioblastoma Multiforme: An Old "Route" for New Perspectives.
    Corsi L; Mescola A; Alessandrini A
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30978987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ccl5 establishes an autocrine high-grade glioma growth regulatory circuit critical for mesenchymal glioblastoma survival.
    Pan Y; Smithson LJ; Ma Y; Hambardzumyan D; Gutmann DH
    Oncotarget; 2017 May; 8(20):32977-32989. PubMed ID: 28380429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NOS Expression and NO Function in Glioma and Implications for Patient Therapies.
    Tran AN; Boyd NH; Walker K; Hjelmeland AB
    Antioxid Redox Signal; 2017 Jun; 26(17):986-999. PubMed ID: 27411305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic hyperammonemia impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in the rat in vivo.
    Hermenegildo C; Montoliu C; Llansola M; Muñoz MD; Gaztelu JM; Miñana MD; Felipo V
    Eur J Neurosci; 1998 Oct; 10(10):3201-9. PubMed ID: 9786213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotective effect of Chuk-Me-Sun-Dan on NMDA- and AMPA-evoked nitric oxide synthase activity in mouse brain.
    Koo BS; Choi EG; Park JB; Cho CH; Chung KH; Kim CH
    Immunopharmacol Immunotoxicol; 2005; 27(3):499-514. PubMed ID: 16237959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monoamines in glioblastoma: complex biology with therapeutic potential.
    Caragher SP; Hall RR; Ahsan R; Ahmed AU
    Neuro Oncol; 2018 Jul; 20(8):1014-1025. PubMed ID: 29126252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.