BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31954963)

  • 1. Modeling and optimization of microbial lipid fermentation from cellulosic ethanol wastewater by Rhodotorula glutinis based on the support vector machine.
    Zhang L; Chao B; Zhang X
    Bioresour Technol; 2020 Apr; 301():122781. PubMed ID: 31954963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial lipid production and organic matters removal from cellulosic ethanol wastewater through coupling oleaginous yeasts and activated sludge biological method.
    Zhang X; Liu M; Zhang X; Tan T
    Bioresour Technol; 2018 Nov; 267():395-400. PubMed ID: 30031278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium.
    Xue F; Miao J; Zhang X; Luo H; Tan T
    Bioresour Technol; 2008 Sep; 99(13):5923-7. PubMed ID: 18420404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of amino acids on lipid production and nutrient removal by Rhodotorula glutinis cultivation in starch wastewater.
    Liu M; Zhang X; Tan T
    Bioresour Technol; 2016 Oct; 218():712-7. PubMed ID: 27420158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of lipid production from cellulosic ethanol fermentation wastewaters by four oleaginous yeasts.
    Yao S; Xiong L; Chen X; Li H; Chen X
    Prep Biochem Biotechnol; 2021; 51(7):669-677. PubMed ID: 33302781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the fermentation effect of
    Xu X; Liu W; Niu H; Hua M; Su Y; Miao X; Chi Y; Xu H; Wang J; Sun M; Li D
    Front Nutr; 2023; 10():1125720. PubMed ID: 36908914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis.
    Xue F; Miao J; Zhang X; Tan T
    Appl Biochem Biotechnol; 2010 Jan; 160(2):498-503. PubMed ID: 18931954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of olive mill wastewater for selective production of lipids and carotenoids by Rhodotorula glutinis.
    Keskin A; Ünlü AE; Takaç S
    Appl Microbiol Biotechnol; 2023 Aug; 107(15):4973-4985. PubMed ID: 37329489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process.
    Chi Z; Zheng Y; Jiang A; Chen S
    Appl Biochem Biotechnol; 2011 Sep; 165(2):442-53. PubMed ID: 21567213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass production from glutamate fermentation wastewater by the co-culture of Candida halophila and Rhodotorula glutinis.
    Zheng S; Yang M; Yang Z; Yang Q
    Bioresour Technol; 2005 Sep; 96(13):1522-4. PubMed ID: 15939282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting Chemical Oxygen Demand (COD) of Cellulosic Ethanol Fermentation Wastewater into Microbial Lipid by Oleaginous Yeast Trichosporon cutaneum.
    Wang J; Hu M; Zhang H; Bao J
    Appl Biochem Biotechnol; 2017 Jul; 182(3):1121-1130. PubMed ID: 28130766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pilot-scale production of microbial lipid using starch wastewater as raw material.
    Xue F; Gao B; Zhu Y; Zhang X; Feng W; Tan T
    Bioresour Technol; 2010 Aug; 101(15):6092-5. PubMed ID: 20371176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial lipid production from banana straw hydrolysate and ethanol stillage.
    Ma X; Zhang M; Gao Z; Gao M; Wu C; Wang Q
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29357-29368. PubMed ID: 33555465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Production of Lipids and Carotenoids by the Red Yeast Rhodotorula from Waste Glycerol Fraction and Potato Wastewater.
    Kot AM; Błażejak S; Kieliszek M; Gientka I; Bryś J
    Appl Biochem Biotechnol; 2019 Oct; 189(2):589-607. PubMed ID: 31073981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].
    Lin Z; Liu H; Zhang J; Wang G
    Sheng Wu Gong Cheng Xue Bao; 2016 Mar; 32(3):339-46. PubMed ID: 27349116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process.
    Cai D; Dong Z; Wang Y; Chen C; Li P; Qin P; Wang Z; Tan T
    Bioresour Technol; 2016 Jul; 211():677-84. PubMed ID: 27060242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of beta-carotene-enriched rice bran using solid-state fermentation of Rhodotorula glutinis.
    Roadjanakamolson M; Suntornsuk W
    J Microbiol Biotechnol; 2010 Mar; 20(3):525-31. PubMed ID: 20372023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of pineapple pulp residue hydrolysis for lipid production by Rhodotorula glutinis TISTR5159 using as biodiesel feedstock.
    Tinoi J; Rakariyatham N
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1641-9. PubMed ID: 27149319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis.
    Yen HW; Zhang Z
    J Biosci Bioeng; 2011 Jul; 112(1):71-4. PubMed ID: 21498112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oleaginous yeasts from Antarctica: Screening and preliminary approach on lipid accumulation.
    Viñarta SC; Angelicola MV; Barros JM; Fernández PM; Mac Cormak W; Aybar MJ; de Figueroa LI
    J Basic Microbiol; 2016 Dec; 56(12):1360-1368. PubMed ID: 27283113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.