These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 31955088)
1. The monthly dynamics of blue water footprints and electricity generation of four types of hydropower plants in Ecuador. Vaca-Jiménez S; Gerbens-Leenes PW; Nonhebel S Sci Total Environ; 2020 Apr; 713():136579. PubMed ID: 31955088 [TBL] [Abstract][Full Text] [Related]
2. Water-electricity nexus in Ecuador: The dynamics of the electricity's blue water footprint. Vaca-Jiménez S; Gerbens-Leenes PW; Nonhebel S Sci Total Environ; 2019 Dec; 696():133959. PubMed ID: 31445236 [TBL] [Abstract][Full Text] [Related]
3. China's rising hydropower demand challenges water sector. Liu J; Zhao D; Gerbens-Leenes PW; Guan D Sci Rep; 2015 Jul; 5():11446. PubMed ID: 26158871 [TBL] [Abstract][Full Text] [Related]
4. Water-energy-ecosystem nexus modeling using multi-objective, non-linear programming in a regulated river: Exploring tradeoffs among environmental flows, cascaded small hydropower, and inter-basin water diversion projects. Yin D; Li X; Wang F; Liu Y; Croke BFW; Jakeman AJ J Environ Manage; 2022 Apr; 308():114582. PubMed ID: 35123200 [TBL] [Abstract][Full Text] [Related]
5. Hybrid power generation for increasing water and energy securities during drought: Exploring local and regional effects in a semi-arid basin. Ferraz de Campos É; Pereira EB; van Oel P; Martins FR; Gonçalves AR; Costa RS J Environ Manage; 2021 Sep; 294():112989. PubMed ID: 34130129 [TBL] [Abstract][Full Text] [Related]
6. Multicomponent assessment of the impact of hydropower cascade on fish metrics. Akstinas V; Virbickas T; Meilutytė-Lukauskienė D; Šarauskienė D; Vezza P; Kriaučiūnienė J; Rakauskas V; Steponėnas A; Jurgelėnaitė A; Jakimavičius D; Nazarenko S Sci Total Environ; 2024 Jan; 906():167541. PubMed ID: 37797772 [TBL] [Abstract][Full Text] [Related]
7. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Turner SWD; Ng JY; Galelli S Sci Total Environ; 2017 Jul; 590-591():663-675. PubMed ID: 28283290 [TBL] [Abstract][Full Text] [Related]
8. Future electricity: The challenge of reducing both carbon and water footprint. Mekonnen MM; Gerbens-Leenes PW; Hoekstra AY Sci Total Environ; 2016 Nov; 569-570():1282-1288. PubMed ID: 27387812 [TBL] [Abstract][Full Text] [Related]
9. Stability analysis of a run-of-river diversion hydropower plant with surge tank and spillway in the head pond. Sarasúa JI; Elías P; Martínez-Lucas G; Pérez-Díaz JI; Wilhelmi JR; Sánchez JÁ ScientificWorldJournal; 2014; 2014():874060. PubMed ID: 25405237 [TBL] [Abstract][Full Text] [Related]
10. Monitoring Dewatering Fish Spawning Sites in the Reservoir of a Large Hydropower Plant in a Lowland Country Using Unmanned Aerial Vehicles. Jurevičius L; Punys P; Šadzevičius R; Kasiulis E Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616901 [TBL] [Abstract][Full Text] [Related]
11. Multi-marker study of the responses of the Unio tumidus from the areas of small and micro hydropower plants at the Dniester River Basin, Ukraine. Gnatyshyna L; Khoma V; Mishchuk O; Martinyuk V; Spriņģe G; Stoliar O Environ Sci Pollut Res Int; 2020 Apr; 27(10):11038-11049. PubMed ID: 31955329 [TBL] [Abstract][Full Text] [Related]
12. Advancing the representation of reservoir hydropower in energy systems modelling: The case of Zambesi River Basin. Stevanato N; Rocco MV; Giuliani M; Castelletti A; Colombo E PLoS One; 2021; 16(12):e0259876. PubMed ID: 34855781 [TBL] [Abstract][Full Text] [Related]
13. Assessment of flow ramping in water bodies impacted by hydropower operation in Norway - Is hydropower with environmental restrictions more sustainable? Halleraker JH; Kenawi MS; L'Abée-Lund JH; Bakken TH; Alfredsen K Sci Total Environ; 2022 Aug; 832():154776. PubMed ID: 35390377 [TBL] [Abstract][Full Text] [Related]
14. Would Africa's largest hydropower dam have profound environmental impacts? Elagib NA; Basheer M Environ Sci Pollut Res Int; 2021 Feb; 28(7):8936-8944. PubMed ID: 33405168 [TBL] [Abstract][Full Text] [Related]
15. Water scarcity footprint of hydropower based on a seasonal approach - Global assessment with sensitivities of model assumptions tested on specific cases. Pfister S; Scherer L; Buxmann K Sci Total Environ; 2020 Jul; 724():138188. PubMed ID: 32247123 [TBL] [Abstract][Full Text] [Related]
16. The impacts of wind power integration on sub-daily variation in river flows downstream of hydroelectric dams. Kern JD; Patino-Echeverri D; Characklis GW Environ Sci Technol; 2014 Aug; 48(16):9844-51. PubMed ID: 25061693 [TBL] [Abstract][Full Text] [Related]
17. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework. Si Y; Li X; Yin D; Liu R; Wei J; Huang Y; Li T; Liu J; Gu S; Wang G PLoS One; 2018; 13(1):e0191483. PubMed ID: 29370206 [TBL] [Abstract][Full Text] [Related]
18. The importance of considering resource availability restrictions in energy planning: What is the footprint of electricity generation in the Middle East and North Africa (MENA)? Mahlooji M; Gaudard L; Ristic B; Madani K Sci Total Environ; 2020 May; 717():135035. PubMed ID: 31839284 [TBL] [Abstract][Full Text] [Related]
19. Hydropower dam operation strongly controls Lake Victoria's freshwater storage variability. Getirana A; Jung HC; Van Den Hoek J; Ndehedehe CE Sci Total Environ; 2020 Jul; 726():138343. PubMed ID: 32315844 [TBL] [Abstract][Full Text] [Related]
20. Minor methane emissions from an Alpine hydropower reservoir based on monitoring of diel and seasonal variability. Sollberger S; Wehrli B; Schubert CJ; DelSontro T; Eugster W Environ Sci Process Impacts; 2017 Oct; 19(10):1278-1291. PubMed ID: 28840207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]