These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31955256)

  • 41. 3D-Printed Bubble-Free Perfusion Cartridge System for Live-Cell Imaging.
    Terutsuki D; Mitsuno H; Kanzaki R
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33053875
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A microfluidic bubble perfusion device for brain slice culture.
    Saleheen A; Acharyya D; Prosser RA; Baker CA
    Anal Methods; 2021 Mar; 13(11):1364-1373. PubMed ID: 33644791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties.
    Huang L; Zhao P; Wang W
    Lab Chip; 2018 Aug; 18(16):2359-2368. PubMed ID: 29946598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mixing characteristics of a bubble mixing microfluidic chip for genomic DNA extraction based on magnetophoresis: CFD simulation and experiment.
    Sun L; K Siddique M; Wang L; Li S
    Electrophoresis; 2021 Nov; 42(21-22):2365-2374. PubMed ID: 33905543
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation.
    Huang L; Tu L; Zeng X; Mi L; Li X; Wang W
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404313
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.
    Shilton RJ; Travagliati M; Beltram F; Cecchini M
    Adv Mater; 2014 Aug; 26(29):4941-6. PubMed ID: 24677370
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Onset of particle trapping and release via acoustic bubbles.
    Chen Y; Fang Z; Merritt B; Strack D; Xu J; Lee S
    Lab Chip; 2016 Aug; 16(16):3024-32. PubMed ID: 26805706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Miniaturized Lab-on-a-Disc (miniLOAD).
    Glass NR; Shilton RJ; Chan PP; Friend JR; Yeo LY
    Small; 2012 Jun; 8(12):1881-8. PubMed ID: 22488691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents.
    Yamashita T; Ando K
    Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.
    Wiklund M; Green R; Ohlin M
    Lab Chip; 2012 Jul; 12(14):2438-51. PubMed ID: 22688253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources.
    Tang Q; Zhou S; Huang L; Chen Z
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Manipulation of biological objects using acoustic bubbles: a review.
    Chen Y; Lee S
    Integr Comp Biol; 2014 Dec; 54(6):959-68. PubMed ID: 24961435
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips.
    Richard C; Fakhfouri A; Colditz M; Striggow F; Kronstein-Wiedemann R; Tonn T; Medina-Sánchez M; Schmidt OG; Gemming T; Winkler A
    Lab Chip; 2019 Dec; 19(24):4043-4051. PubMed ID: 31723953
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing.
    Phan HV; Coşkun MB; Şeşen M; Pandraud G; Neild A; Alan T
    Lab Chip; 2015 Nov; 15(21):4206-16. PubMed ID: 26381355
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of secondary ultrasonic waves radiated by two oscillating bubbles.
    Chelly N; Yamakoshi Y; Masuda N
    J Med Ultrason (2001); 2004 Sep; 31(3):121-9. PubMed ID: 27278747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlled orientation and sustained rotation of biological samples in a sono-optical microfluidic device.
    Kvåle Løvmo M; Pressl B; Thalhammer G; Ritsch-Marte M
    Lab Chip; 2021 Apr; 21(8):1563-1578. PubMed ID: 33634305
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acoustic Streaming-Induced Multimodal Locomotion of Bubble-Based Microrobots.
    Mahkam N; Aghakhani A; Sheehan D; Gardi G; Katzschmann R; Sitti M
    Adv Sci (Weinh); 2023 Dec; 10(35):e2304233. PubMed ID: 37884484
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-speed imaging of ultrasound driven cavitation bubbles in blind and through holes.
    Kauer M; Belova-Magri V; Cairós C; Linka G; Mettin R
    Ultrason Sonochem; 2018 Nov; 48():39-50. PubMed ID: 30080564
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.
    Doinikov AA; Combriat T; Thibault P; Marmottant P
    Phys Rev E; 2016 Sep; 94(3-1):033109. PubMed ID: 27739843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.